986 resultados para STRONGLY COUPLED PLASMA
Resumo:
A flow-injection (FI) system to match concentrations was used as an auto-diluter in multielement determination by inductively coupled plasma-mass spectrometry (ICP-MS). The flow system comprised loop-based injection or a timed valve that introduced a variable sample volume info a spray chamber through a standard Meinhard nebulizer of an ICP-MS. Routinely analyzed samples such as water, plant, and steel were selected. The accuracy of multielement determination was checked against water standard reference material from the National Institute of Standards and Technology (1643d), plant standard reference material from the National Bureau of Standards (1572 citrus leaves), and steel standard reference material from the National Bureau of Standards (AISI 4340). The measuring system was calibrated with a multielement solution, yielding a linear plot with good precision [relative standard deviation (RSD) < 3%, n = 12]. The results were in agreement at a 95% confidence level with the certified values for the reference materials and also with those obtained by continuous aspiration and by (FI) with a discrete volume. (C) 1999 John Wiley & Sons, Inc.
Resumo:
The main variables found on procedure of the dissolution silicate rocks using acid dissolution in teflon open vessel for analysis of micro elements by ICP-AES has been determined. The results obtained for some samples showed strong dependence of the rock mineralogical composition, then it was recommended an alkaline fusion step after acid dissolution. The decomposition procedure use 20 mi of an acid mixture of HF:HNO3 in the proportion 3:1 for a fraction of 250 mg pulverized sample. The recommended temperatures were 60 degrees C for attack and 90 degrees C for acid volatilization. The fusion step with 50 mg LiBO2 at 1000 degrees C may be used if non-attacked residue is observed in the solution. The whole time was 6 h per sample. Nine types os silicate rocks that show mineralogical and chemical different compositions were chosen for obtaining the optimization of the variables. The elements used were Ce, Y, Yb and Zr. In addition, ultrassonic nebulization has been used. The percentual standard deviations obtained for five determinations were 0.7 and 1.4 for triplicate samples. The mineralogical and textural information from the petrographical analysis of the samples indicated the need of increasing the fusion step on the optimized procedure.
Resumo:
A study was undertaken to evaluate Saccharonzyces cerevisiae as a substrate for the biosorption of Cr(III) and Cr(VI) aiming to the selective determination of these species in aqueous solutions. The yeast cells were covalently immobilised on controlled pore glass (CPG), packed in a minicolumn and incorporated in an on-line flow injection system. The effect of chemical and physical variables affecting the biosorption process was tested in order to select the optimal analytical conditions for the Cr retention by S. cerevisiae. Cr(III) was retained by the immobilised cells and Cr(VI) were retained by CPG. The speciation was possible by selective and sequential elution of Cr(III) with 0.05 mol L-1 HCl and 2.0 mol L-1 HNO3 for Cr(VI). The influence of some concomitant ions up to 20 mg L-1 was also tested. Quantitative determinations of Cr were carried out by means of inductively coupled plasma optical emission spectrometry (ICP OES). Preconcentration factors of 12 were achieved for Cr(III) and 5 for Cr(VI) when 1.7 mL of sample were processed reaching detection limits of 0.45 for Cr(III) and 1.5 mu g L-1 for Cr(VI). The speciation of inorganic Cr in different kinds of natural waters was performed following the proposed method. Spiked water samples were also analysed and the recoveries were in all cases between 81 and 103%. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Throughout the world, biomonitoring has become the standard for assessing exposure of individuals to toxic elements as well as for responding to serious environmental public health problems. However, extensive biomonitoring surveys require rapid and simple analytical methods. Thus, a simple and high-throughput method is proposed for the determination of arsenic (As), cadmium (Cd), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and selenium (Se) in blood samples by using inductively coupled plasma-mass spectrometry (ICP-MS). Prior to analysis, 200 l of blood samples was mixed with 500 l of 10% v/v tetramethylammonium hydroxide (TMAH) solution, incubated for 10 min, and subsequently diluted to 10 ml with a solution containing 0.05% w/v ethylenediamine tetraacetic acid (EDTA) + 0.005% v/v Triton X-100. After that, samples were directly analyzed by ICP-MS (ELAN DRC II). Rhodium was selected as an internal standard with matrix-matching calibration. Method detection limits were 0.08, 0.04, 0.5, 0.09, 0.12, 0.04, and 0.1 g//L for As, Cd, Cu, Mn, Ni, Pb, and Se, respectively. Validation data are provided based on the analysis of blood samples from the trace elements inter-\comparison program operated by the Institut National de Sante Publique du Quebec, Canada. Additional validation was provided by the analysis of human blood samples by the proposed method and by using electrothermal atomic absorption spectrometry (ETAAS). The method was subsequently applied for the estimation of background metal blood values in the Brazilian population. In general, the mean concentrations of As, Cd, Cu, Mn, Ni, Pb, and Se in blood were 1.1, 0.4, 890, 9.6, 2.1, 65.4, and 89.3 g/L, respectively, and are in agreement with other global populations. Influences of age, gender, smoking habits, alcohol consumption, and geographical variation on the values were also considered. Smoking habits influenced the levels of Cd in blood. The levels of Cu, Mn, and Pb were significantly correlated with gender, whereas Cu and Pb were significantly correlated with age. There were also interesting differences in Mn and Se levels in the population living in the north of Brazil compared to the south.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Southwest region of the Bahia state in Brazil hosts the largest uranium reserve of the country (100 kton in uranium, only), plus the cities of Caetite, Lagoa Real and Igapora. In this work, aim was at the investigation of uranium burdens on residents of these cities by using teeth as bioindicators, as a contribution for possible radiation protection measures. Thus, a total of 41 human teeth were collected, plus 50 from an allegedly uranium free area (the control region). Concentrations of uranium in teeth from residents of 5- to 87-y old were determined by means of a high-resolution inductively coupled plasma mass spectrometer (ICP-MS). The highest uranium concentration in teeth was measured from samples belonging to residents of Caetite (median equal to 16 ppb). Assuming that the uranium concentrations in teeth and bones are similar within 10-20% (for children and young adults), it concluded that uranium body levels in residents of Caetite are at least one order of magnitude higher than the worldwide average. This finding led to conclude that daily ingestion of uranium, from food and water, is equally high.
Resumo:
The south region of São Paulo city hosts the Guarapiranga dam, responsible for water supply to 25% of the city population. Their surroundings have been subject to intense and irregular occupation by people from very low socioeconomics classes. Measurements undertaken on sediment and particulate materials in the dam revealed concentrations of lead. copper, zinc and cadmium above internationally accepted limits. Epidemiological and toxicological studies undertaken by the World Health Organization in individuals exhibiting lead concentrations in blood, near or below the maximum recommended (10 mu g dl(-1)), surprisingly revealed that toxic effects are more intense in individuals belonging to low socioeconomics classes. Motivated by these facts, we aimed at the investigation of chronic incorporation of lead. as well as the use of our BIOKINETICS code, which is based on an accepted ICRP biokinetics model for lead, in order to extrapolate the results from teeth to other organs. The focus of our data taking was children from poor families, living in a small, restrict and allegedly contaminated area in São Paulo city. Thus, a total of 74 human teeth were collected. The average concentration of lead in teeth of children 5 to 10 years old was determined by means of a high-resolution inductively coupled plasma mass spectrometer (ICP-MS). For standardization of the measurements, an animal bone certified material (H-Animal Bone), from the International Atomic Energy Agency, was analyzed. The amount of lead in children living in the surroundings of the dam, was approximately 40% higher than those from the control region, and the average lead concentration was equal to 1.3 mu g g(-1) approximately. Grouping the results in terms of gender, tooth type and condition, it was concluded that a carious molar of boys is a much more efficient contamination pathway for lead, resulting in concentrations 70% higher than in the control region. We also inferred the average concentrations of lead in other organs of these children, by making use of our BIOKINETIC code. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The aim of the present work was to carry out experimental comparison between humic substances (HS) and representative α-amino acids (methionine, methionine sulfoxide and cysteine hydrochloride) in relation to the complexation of biologically active trace elements (Al, Cu, Pb, Mn, Zn, Cd and Ni). A mobile time-controlled tangential-flow UF technique was applied to differentiate between HS-metal and α-aminoacids-metal complexes. Metal determinations were conventionally carried out using a ICP-OES. The results showed that HS may be considered as a selective complexing agents with higher metal bonding capability in relation to Al, Cu and Pb, the fact that may be clinically important.
Resumo:
This work proposes a new method to determine the chemical composition of magnetic ferrite nanoparticles by the slurry injection technique using the inductively coupled plasma optical emission spectroscopy. In this way, experimental conditions such as aerosol gas flow rate and colloidal stability were optimized in order to use aqueous calibration curves in the slurry nebulization and to determine the chemical composition of a series of sols containing chemically synthesized size-tailored NiFe 2O 4 nanograms. Then, the results of direct sampling and those of conventional aqueous introduction analysis are compared, showing the efficiency of the proposed method.
Resumo:
Further characterization of hemoglobin of Glossoscolex paulistus (HbGp) subunits was performed based on SDS-PAGE, size exclusion chromatography (SEC) and MALDI-TOF-MS analysis. SDS-PAGE has shown a total of four linker chains, two quite intense and two of lower intensity. HbGp fractions (I-VI), obtained by size exclusion chromatography (SEC), from oligomeric dissociation at alkaline pH 9.6, were monitored. Fraction I is identical to the whole protein. The monomeric chains c, obtained from the trimer abc reduction, present four isoforms with MM 17,336 Da, 17,414 Da, 17,546 Da and 17,620 Da. Furthermore, the trimer subunit presents two isoforms, T 1 and T 2, with MM 51,200 ± 60 and 51,985 ± 50 Da, respectively. Based on SDS-PAGE, the linker chains seem to be distributed along the different fractions of the SEC chromatogram, appearing along the peaks corresponding to fractions I-V. The fraction IV contains, predominantly, trimers with some linkers contamination. The strong interaction of linker chains L with the trimers abc, makes it difficult to obtain these subunits in pure form. The monomer d in fraction VI appears to be quite pure, in agreement with previous studies. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
This investigation was carried out within São Paulo State, Brazil, and involved the sampling of well-known mineral bottled waters for performing a comparative hydrochemical study and of a spring occurring at Corumbataí city, in order to evaluate its suitability for bottling. Several methods were utilized for acquiring the hydrochemical data like the methyl orange end-point titration, potentiometry, ion selective electrode, colorimetry, flame photometry and inductively-coupled plasma spectrometry. The results obtained for the analyzed samples were compared with the guideline values established by the National Commission of Rules and Standards for Food of the Brazilian Health Ministry published in 1976. The Brazilian Code for Mineral Waters that was established by Register 7841 published on 8 August 1945 was also taken into account for verifying if the spring waters are mineralized. The hydrochemical data allowed identify some constituents impoverishing the water quality, thus, implying on its nonutilization for commercial purposes (bottling). In one specific case, the spring water only can become appropriate for human consumption after previous chemical treatment. © 201 WIT Press.
Resumo:
If the electroweak symmetry breaking is originated from a strongly coupled sector, as for instance in composite Higgs models, the Higgs boson couplings can deviate from their Standard Model values. In such cases, at sufficiently high energies there could occur an onset of multiple Higgs boson and longitudinally polarised electroweak gauge boson (V L ) production. We study the sensitivity to anomalous Higgs couplings in inelastic processes with 3 and 4 particles (either Higgs bosons or V L 's) in the final state. We show that, due to the more severe cancellations in the corresponding amplitudes as compared to the usual 2 → 2 processes, large enhancements with respect to the Standard Model can arise even for small modifications of the Higgs couplings. In particular, we find that triple Higgs production provides the best multiparticle channel to look for these deviations. We briefly explore the consequences of multiparticle production at the LHC. © 2013 SISSA.
Resumo:
Water pollution found in major rivers in Brazil has its origin from urban sewage discharges and industrial effluent, carried out by small streams and rivers crossing cities. Therefore, studies related to hydrographic micro-basins offer the opportunity to establish environmental management strategies for restoring water resources, based on diagnosis of the water quality. Despite this understanding, few studies in urban and rural areas have been performed in a systematic manner in Brazilian micro-basins. The main goal of this research was to diagnose the water resources in micro-basins in the region of the district of Americana, São Paulo state, Brazil, through the quantification of metals in water and sediment. The methodology was based on the investigation of metals (Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn), in four micro-basins, determined by inductively coupled plasma optical emission spectrometry (ICP-OES). The most significant result showed high concentration levels of chromium (969 μg L-1), downstream of the discharge of sewage from the city of Nova Odessa. This concentration in the river was above the allowed limit of Brazilian regulation agency (50 μg L-1 for Cr). Also high levels of Cr were found in the sediment (98.9 μg g-1) collected at the same monitored site. These results are important indicators of environmental performance and anthropogenic activities to help the government establish environmental management strategies aimed at the reduction of water pollution. © 2013 WIT Press.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)