998 resultados para SPIN-GLASS MODELS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a measurement of the longitudinal double-spin asymmetry A(LL) and the differential cross section for inclusive pi(0) production at midrapidity in polarized proton collisions at s=200 GeV. The cross section was measured over a transverse momentum range of 1 < p(T)< 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p(T)< 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of pi(0)'s in their parent jets was found to be around 0.7 for electromagnetically triggered events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The longitudinal spin transfer, D(LL), from high energy polarized protons to Lambda and Lambda hyperons has been measured for the first time in proton-proton collisions at s=200 GeV with the STAR detector at the Relativistic Heavy Ion Collider. The measurements cover pseudorapidity, eta, in the range |eta|< 1.2 and transverse momenta, p(T), up to 4 GeV/c. The longitudinal spin transfer is found to be D(LL)=-0.03 +/- 0.13(stat)+/- 0.04(syst) for inclusive Lambda and D(LL)=-0.12 +/- 0.08(stat)+/- 0.03(syst) for inclusive Lambda hyperons with <>=0.5 and << p(T)>>=3.7 GeV/c. The dependence on eta and p(T) is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precise quasielastic and alpha-transfer excitation functions, at theta(lab) = 161 degrees, have been measured at energies near the Coulomb barrier for the (16)O + (63)Cu system. This is the first time reported quasielastic barrier distribution for a medium odd-A nucleus target deduced from the data. Additional elastic scattering angular distributions data available in the literature for this system were also used in the investigation of the role of several individual channels in the reaction dynamics, by comparing the data with free-parameter coupled-channels calculations. In order to do so, the nucleus-nucleus bare potential has a double-folding potential as the real component and only a very short-range imaginary potential. The quasielastic barrier distribution has been shown to be a powerful tool in this analysis at the barrier region. A high collectivity of the (63)Cu was observed, mainly due to the strong influence of its 5/2-and 7/2-states on all reaction channels investigated. A striking influence of the reorientation of the ground-state target-spin on the elastic cross sections, taken at backward angles, was also observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High wave-vector spin waves in ultrathin Fe/W(110) films up to 20 monolayers (MLs) thick have been studied using spin-polarized electron energy-loss spectroscopy. An unusual nonmonotonous dependence of the spin wave energies on the film thickness is observed, featuring a pronounced maximum at 2 ML coverage. First-principles theoretical study reveals the origin of this behavior to be in the localization of the spin waves at the surface of the film, as well as in the properties of the interlayer exchange coupling influenced by the hybridization of the electron states of the film and substrate and by the strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the common singularities present in generic modified gravity models governed by actions of the type S = integral d(4)x root-gf(R, phi, X). with X = -1/2 g(ab)partial derivative(a)phi partial derivative(b)phi, are essentially the same anisotropic instabilities associated to the hypersurface F(phi) = 0 in the case of a nonminimal coupling of the type F(phi)R, enlightening the physical origin of such singularities that typically arise in rather complex and cumbersome inhomogeneous perturbation analyses. We show, moreover, that such anisotropic instabilities typically give rise to dynamically unavoidable singularities, precluding completely the possibility of having physically viable models for which the hypersurface partial derivative f/partial derivative R = 0 is attained. Some examples are explicitly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elementary surface excitations are studied by spin-polarized electron energy loss spectroscopy on a prototype oxide surface [an oxygen passivated Fe(001)-p(1 x 1) surface], where the various excitations coexist. For the first time, the surface phonons and magnons are measured simultaneously and are distinguished based on their different spin nature. The dispersion relation of all excitations is probed over the entire Brillouin zone. The different phonon modes observed in our experiment are described by means of ab initio calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by the quasi-one-dimensional antiferromagnet CaV(2)O(4), we explore spin-orbital systems in which the spin modes are gapped but orbitals are near a macroscopically degenerate classical transition. Within a simplified model we show that gapless orbital liquid phases possessing power-law correlations may occur without the strict condition of a continuous orbital symmetry. For the model proposed for CaV(2)O(4), we find that an orbital phase with coexisting order parameters emerges from a multicritical point. The effective orbital model consists of zigzag-coupled transverse field Ising chains. The corresponding global phase diagram is constructed using field theory methods and analyzed near the multicritical point with the aid of an exact solution of a zigzag XXZ model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the density matrix renormalization group, we investigate the Renyi entropy of the anisotropic spin-s Heisenberg chains in a z-magnetic field. We considered the half-odd-integer spin-s chains, with s = 1/2, 3/2, and 5/2, and periodic and open boundary conditions. In the case of the spin-1/2 chain we were able to obtain accurate estimates of the new parity exponents p(alpha)((p)) and p(alpha)((o)) that gives the power-law decay of the oscillations of the alpha-Renyi entropy for periodic and open boundary conditions, respectively. We confirm the relations of these exponents with the Luttinger parameter K, as proposed by Calabrese et al. [Phys. Rev. Lett. 104, 095701 (2010)]. Moreover, the predicted periodicity of the oscillating term was also observed for some nonzero values of the magnetization m. We show that for s > 1/2 the amplitudes of the oscillations are quite small and get accurate estimates of p(alpha)((p)) and p(alpha)((o)) become a challenge. Although our estimates of the new universal exponents p(alpha)((p)) and p(alpha)((o)) for the spin-3/2 chain are not so accurate, they are consistent with the theoretical predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finite-size scaling analysis turns out to be a powerful tool to calculate the phase diagram as well as the critical properties of two-dimensional classical statistical mechanics models and quantum Hamiltonians in one dimension. The most used method to locate quantum critical points is the so-called crossing method, where the estimates are obtained by comparing the mass gaps of two distinct lattice sizes. The success of this method is due to its simplicity and the ability to provide accurate results even considering relatively small lattice sizes. In this paper, we introduce an estimator that locates quantum critical points by exploring the known distinct behavior of the entanglement entropy in critical and noncritical systems. As a benchmark test, we use this new estimator to locate the critical point of the quantum Ising chain and the critical line of the spin-1 Blume-Capel quantum chain. The tricritical point of this last model is also obtained. Comparison with the standard crossing method is also presented. The method we propose is simple to implement in practice, particularly in density matrix renormalization group calculations, and provides us, like the crossing method, amazingly accurate results for quite small lattice sizes. Our applications show that the proposed method has several advantages, as compared with the standard crossing method, and we believe it will become popular in future numerical studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The third-harmonic optical susceptibility, chi((3))(3 omega; omega, omega, omega) of a silicate glass ceramic containing sodium niobate nanocrystals was measured for incident broadband light with central frequency omega corresponding to 1900nm. Absolute values of |chi((3))| and the dispersion of the refractive index from 600 to 1900nm were measured using the spectrally resolved femtosecond Maker fringes technique. The experiments show that |chi((3))| is 1 order of magnitude larger than silica, and it grows by similar to 50% when the volume fraction occupied by the nanocrystals increases up to 40%. (C) 2011 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct and analyze a microscopic model for insulating rocksalt ordered double perovskites, with the chemical formula A(2)BB'O(6), where the B' atom has a 4d(1) or 5d(1) electronic configuration and forms a face-centered-cubic lattice. The combination of the triply degenerate t(2g) orbital and strong spin-orbit coupling forms local quadruplets with an effective spin moment j=3/2. Moreover, due to strongly orbital-dependent exchange, the effective spins have substantial biquadratic and bicubic interactions (fourth and sixth order in the spins, respectively). This leads, at the mean-field level, to three main phases: an unusual antiferromagnet with dominant octupolar order, a ferromagnetic phase with magnetization along the [110] direction, and a nonmagnetic but quadrupolar ordered phase, which is stabilized by thermal fluctuations and intermediate temperatures. All these phases have a two-sublattice structure described by the ordering wave vector Q=2 pi(001). We consider quantum fluctuations and argue that in the regime of dominant antiferromagnetic exchange, a nonmagnetic valence-bond solid or quantum-spin-liquid state may be favored instead. Candidate quantum-spin-liquid states and their basic properties are described. We also address the effect of single-site anisotropy driven by lattice distortions. Existing and possible future experiments are discussed in light of these results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss an approximation for the dynamic charge response of nonlinear spin-1/2 Luttinger liquids in the limit of small momentum. Besides accounting for the broadening of the charge peak due to two-holon excitations, the nonlinearity of the dispersion gives rise to a two-spinon peak, which at zero temperature has an asymmetric line shape. At finite temperature the spin peak is broadened by diffusion. As an application, we discuss the density and temperature dependence of the Coulomb drag resistivity due to long-wavelength scattering between quantum wires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the intrinsic spin Hall effect in two-dimensional electron gases in quantum wells with two subbands, where a new intersubband-induced spin-orbit coupling is operative. The bulk spin Hall conductivity sigma(z)(xy) is calculated in the ballistic limit within the standard Kubo formalism in the presence of a magnetic field B and is found to remain finite in the B=0 limit, as long as only the lowest subband is occupied. Our calculated sigma(z)(xy) exhibits a nonmonotonic behavior and can change its sign as the Fermi energy (the carrier areal density n(2D)) is varied between the subband edges. We determine the magnitude of sigma(z)(xy) for realistic InSb quantum wells by performing a self-consistent calculation of the intersubband-induced spin-orbit coupling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In one-component Abelian sandpile models, the toppling probabilities are independent quantities. This is not the case in multicomponent models. The condition of associativity of the underlying Abelian algebras imposes nonlinear relations among the toppling probabilities. These relations are derived for the case of two-component quadratic Abelian algebras. We show that Abelian sandpile models with two conservation laws have only trivial avalanches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma(tau)=3/2). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma(tau)=1.780 +/- 0.005.