934 resultados para SOIL CARBON
Resumo:
Soil spectroscopy was applied for predicting soil organic carbon (SOC) in the highlands of Ethiopia. Soil samples were acquired from Ethiopia’s National Soil Testing Centre and direct field sampling. The reflectance of samples was measured using a FieldSpec 3 diffuse reflectance spectrometer. Outliers and sample relation were evaluated using principal component analysis (PCA) and models were developed through partial least square regression (PLSR). For nine watersheds sampled, 20% of the samples were set aside to test prediction and 80% were used to develop calibration models. Depending on the number of samples per watershed, cross validation or independent validation were used.The stability of models was evaluated using coefficient of determination (R2), root mean square error (RMSE), and the ratio performance deviation (RPD). The R2 (%), RMSE (%), and RPD, respectively, for validation were Anjeni (88, 0.44, 3.05), Bale (86, 0.52, 2.7), Basketo (89, 0.57, 3.0), Benishangul (91, 0.30, 3.4), Kersa (82, 0.44, 2.4), Kola tembien (75, 0.44, 1.9),Maybar (84. 0.57, 2.5),Megech (85, 0.15, 2.6), andWondoGenet (86, 0.52, 2.7) indicating that themodels were stable. Models performed better for areas with high SOC values than areas with lower SOC values. Overall, soil spectroscopy performance ranged from very good to good.
Resumo:
Over the past few decades, the advantages of the visible-near infra-red (VisNIR) diffuse reflectance spectrometer (DRS) method have enabled prediction of soil organic carbon (SOC). In this study, SOC was predicted using regression models for samples taken from three sites (Gununo, Maybar and Anjeni) in Ethiopia. SOC was characterized in laboratory using conventional wet chemistry and VisNIR-DRS methods. Principal component analysis (PCA), principal component regression (PCR) and partial least square regression (PLS) models were developed using Unscrambler X 10.2. PCA results show that the first two components accounted for a minimum of 96% variation which increased for individual sites and with data treatments. Correlation (r), coefficient of determination (R2) and residual prediction deviation (RPD) were used to rate four models built. PLS model (r, R2, RPD) values for Anjeni were 0.9, 0.9 and 3.6; for Gununo values 0.6, 0.3 and 1.2; for Maybar values 0.6, 0.3 and 0.9, and for the three sites values 0.7, 0.6 and 1.5, respectively. PCR model values (r, R2, RPD) for Anjeni were 0.9, 0.8 and 2.7; for Gununo values 0.5, 0.3 and 1; for Maybar values 0.5, 0.1 and 0.7, and for the three sites values 0.7, 0.5 and 1.2, respectively. Comparison and testing of models shows superior performance of PLS to PCR. Models were rated as very poor (Maybar), poor (Gununo and three sites) and excellent (Anjeni). A robust model, Anjeni, is recommended for prediction of SOC in Ethiopia.
Resumo:
The role of Soil Organic Carbon (SOC) in mitigating climate change, indicating soil quality and ecosystem function has created research interested to know the nature of SOC at landscape level. The objective of this study was to examine variation and distribution of SOC in a long-term land management at a watershed and plot level. This study was based on meta-analysis of three case studies and 128 surface soil samples from Ethiopia. Three sites (Gununo, Anjeni and Maybar) were compared after considering two Land Management Categories (LMC) and three types of land uses (LUT) in quasi-experimental design. Shapiro-Wilk tests showed non-normal distribution (p = 0.002, a = 0.05) of the data. SOC median value showed the effect of long-term land management with values of 2.29 and 2.38 g kg-1 for less and better-managed watersheds, respectively. SOC values were 1.7, 2.8 and 2.6 g kg-1 for Crop (CLU), Grass (GLU) and Forest Land Use (FLU), respectively. The rank order for SOC variability was FLU>GLU>CLU. Mann-Whitney U and Kruskal-Wallis test showed a significant difference in the medians and distribution of SOC among the LUT, between soil profiles (p<0.05, confidence interval 95%, a = 0.05) while it is not significant (p>0.05) for LMC. The mean and sum rank of Mann Whitney U and Kruskal Wallis test also showed the difference at watershed and plot level. Using SOC as a predictor, cross-validated correct classification with discriminant analysis showed 46 and 49% for LUT and LMC, respectively. The study showed how to categorize landscapes using SOC with respect to land management for decision-makers.
Resumo:
The CENTURY soil organic matter model was adapted for the DSSAT (Decision Support System for Agrotechnology Transfer), modular format in order to better simulate the dynamics of soil organic nutrient processes (Gijsman et al., 2002). The CENTURY model divides the soil organic carbon (SOC) into three hypothetical pools: microbial or active material (SOC1), intermediate (SOC2) and the largely inert and stable material (SOC3) (Jones et al., 2003). At the beginning of the simulation, CENTURY model needs a value of SOC3 per soil layer which can be estimated by the model (based on soil texture and management history) or given as an input. Then, the model assigns about 5% and 95% of the remaining SOC to SOC1 and SOC2, respectively. The model performance when simulating SOC and nitrogen (N) dynamics strongly depends on the initialization process. The common methods (e.g. Basso et al., 2011) to initialize SOC pools deal mostly with carbon (C) mineralization processes and less with N. Dynamics of SOM, SOC, and soil organic N are linked in the CENTURY-DSSAT model through the C/N ratio of decomposing material that determines either mineralization or immobilization of N (Gijsman et al., 2002). The aim of this study was to evaluate an alternative method to initialize the SOC pools in the DSSAT-CENTURY model from apparent soil N mineralization (Napmin) field measurements by using automatic inverse calibration (simulated annealing). The results were compared with the ones obtained by the iterative initialization procedure developed by Basso et al., 2011.
Resumo:
Chiefly tables.
Resumo:
Forty-four soils from under native vegetation and a range of management practices following clearing were analysed for ‘labile’ organic carbon (OC) using both the particulate organic carbon (POC) and the 333 mm KmnO4 (MnoxC) methods. Although there was some correlation between the 2 methods, the POC method was more sensitive by about a factor of 2 to rapid loss in OC as a result of management or land-use change. Unlike the POC method, the MnoxC method was insensitive to rapid gains in TOC following establishment of pasture on degraded soil. The MnoxC method was shown to be particularly sensitive to the presence of lignin or lignin-like compounds and therefore is likely to be very sensitive to the nature of the vegetation present at or near the time of sampling and explains the insensitivity of this method to OC gain under pasture. The presence of charcoal is an issue with both techniques, but whereas the charcoal contribution to the POC fraction can be assessed, the MnoxC method cannot distinguish between charcoal and most biomolecules found in soil. Because of these limitations, the MnoxC method should not be applied indiscriminately across different soil types and management practices.