996 resultados para SOFT-START POLYMERIZATION
Resumo:
Research and field experience have shown that well-path control is important in many cases, not only to reach the desired coordinates, but also to arrive at the well completion target from the preferred trajectory.
Resumo:
The kinetic studies of the acrylic octadecyl ester and styrene polymerization in microemulsion systems, (1) cetyl pyridine bromide (CPDB)/t-butanol/styrene/water; (2) CPDB/t-butanol/toluene + acrylic octadecyl ester (1:1, w/v)/ water; (3) cetyl pyridine bromide/styrene/formamide, were made by using dynamic laser light scattering techniques (DLS). The mechanisms of nucleation of latex particles were discussed. The most possible nucleation location of the styrene and acrylic octadecyl ester microlatex particles in aqueous microemulsion system is in aqueous phase via homogeneous nucleation. Meanwhile, parts of microlatex particles are possibly produced via swollen micelles (microemulsions) and monomer droplets nucleation. On the other hand, the most possible nucleation location of the styrene microlatex particles in nonaqueous microemulsion system is inside monomer droplets. The relationship between the amount of monomer and the size of microlatex was also investigated. It has been found that the size of microlatex particles could be controlled by changing the amount of monomer. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A new collision model, called the generalized soft-sphere (GSS) model, is introduced. It has the same total cross section as the generalized hard-sphere model [Phys. Fluids A 5, 738 (1993)], whereas the deflection angle is calculated by the soft-sphere scattering model [Phys. Fluids A 3, 2459 (1991)]. In virtue of a two-term formula given to fit the numerical solutions of the collision integrals for the Lennard-Jones (6-12) potential and for the Stockmayer potential, the parameters involved in the GSS model are determined explicitly that may fully reproduce the transport coefficients under these potentials. Coefficients of viscosity, self-diffusion and diffusion for both polar and nonpolar molecules given by the GSS model and experiment are in excellent agreement over a wide range of temperature from low to high.
Resumo:
Nanoindentation experiments on Al/glass systems show that, as the indentation depth increases, the hardness decreases during a shallow indentation, and increases when the indenter tip approaches the film–substrate interface. We associate the rise in hardness during two stages with the strong strain gradient effects, the first stage is related with the small scale effects and the second stage with the strain gradient between the indenter and the hard substrate. Using the strain gradient theory proposed by Chen and Wang and the classical plasticity theory, the observed nanoindentation behavior is modeled and analyzed by means of the finite element method, and it is found that the classical plasticity cannot explain the experiment results but the strain gradient theory can describe the experiment data at both shallow and deep indentation depths very well. The results prove that both the strain gradient effects and substrate effects exist in the nanoindentation of the film–substrate system.
Resumo:
Self-assembly processes resulting in linear structures are often observed in molecular biology, and include the formation of functional filaments such as actin and tubulin, as well as generally dysfunctional ones such as amyloid aggregates. Although the basic kinetic equations describing these phenomena are well-established, it has proved to be challenging, due to their non-linear nature, to derive solutions to these equations except for special cases. The availability of general analytical solutions provides a route for determining the rates of molecular level processes from the analysis of macroscopic experimental measurements of the growth kinetics, in addition to the phenomenological parameters, such as lag times and maximal growth rates that are already obtainable from standard fitting procedures. We describe here an analytical approach based on fixed-point analysis, which provides self-consistent solutions for the growth of filamentous structures that can, in addition to elongation, undergo internal fracturing and monomer-dependent nucleation as mechanisms for generating new free ends acting as growth sites. Our results generalise the analytical expression for sigmoidal growth kinetics from the Oosawa theory for nucleated polymerisation to the case of fragmenting filaments. We determine the corresponding growth laws in closed form and derive from first principles a number of relationships which have been empirically established for the kinetics of the self-assembly of amyloid fibrils.