960 resultados para SIGNAL-REGULATING KINASE-1
Resumo:
Detection of viral nucleic acids is central to antiviral immunity. Recently, DAI/ZBP1 (DNA-dependent activator of IRFs/Z-DNA binding protein 1) was identified as a cytoplasmic DNA sensor and shown to activate the interferon regulatory factor (IRF) and nuclear factor-kappa B (NF-kappaB) transcription factors, leading to type-I interferon production. DAI-induced IRF activation depends on TANK-binding kinase 1 (TBK1), whereas signalling pathways and molecular components involved in NF-kappaB activation remain elusive. Here, we report the identification of two receptor-interacting protein (RIP) homotypic interaction motifs (RHIMs) in the DAI protein sequence, and show that these domains relay DAI-induced NF-kappaB signals through the recruitment of the RHIM-containing kinases RIP1 and RIP3. We show that knockdown of not only RIP1, but also RIP3 affects DAI-induced NF-kappaB activation. Importantly, RIP recruitment to DAI is inhibited by the RHIM-containing murine cytomegalovirus (MCMV) protein M45. These findings delineate the DAI signalling pathway to NF-kappaB and suggest a possible new immune modulation strategy of the MCMV.
Resumo:
ABSTRACT: BACKGROUND: After liver injury, the repair process comprises activation and proliferation of hepatic stellate cells (HSCs), which produce extracellular matrix (ECM) proteins. Peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is highly expressed in these cells, but its function in liver repair remains incompletely understood. This study investigated whether activation of PPARβ/δ with the ligand GW501516 influenced the fibrotic response to injury from chronic carbon tetrachloride (CCl4) treatment in mice. Wild type and PPARβ/δ-null mice were treated with CCl4 alone or CCl4 co-administered with GW501516. To unveil mechanisms underlying the PPARβ/δ-dependent effects, we analyzed the proliferative response of human LX-2 HSCs to GW501516 in the presence or absence of PPARβ/δ. RESULTS: We found that GW501516 treatment enhanced the fibrotic response. Compared to the other experimental groups, CCl4/GW501516-treated wild type mice exhibited increased expression of various profibrotic and pro-inflammatory genes, such as those involved in extracellular matrix deposition and macrophage recruitment. Importantly, compared to healthy liver, hepatic fibrotic tissues from alcoholic patients showed increased expression of several PPAR target genes, including phosphoinositide-dependent kinase-1, transforming growth factor beta-1, and monocyte chemoattractant protein-1. GW501516 stimulated HSC proliferation that caused enhanced fibrotic and inflammatory responses, by increasing the phosphorylation of p38 and c-Jun N-terminal kinases through the phosphoinositide-3 kinase/protein kinase-C alpha/beta mixed lineage kinase-3 pathway. CONCLUSIONS: This study clarified the mechanism underlying GW501516-dependent promotion of hepatic repair by stimulating proliferation of HSCs via the p38 and JNK MAPK pathways.
Resumo:
Tissue-targeted expression is of major interest for studying the contribution of cellular subpopulations to neurodegenerative diseases. However, in vivo methods to investigate this issue are limited. Here, we report an analysis of the cell specificity of expression of fluorescent reporter genes driven by six neuronal promoters, with the ubiquitous phosphoglycerate kinase 1 (PGK) promoter used as a reference. Quantitative analysis of AcGFPnuc expression in the striatum and hippocampus of rodents showed that all lentiviral vectors (LV) exhibited a neuronal tropism; however, there was substantial diversity of transcriptional activity and cell-type specificity of expression. The promoters with the highest activity were those of the 67 kDa glutamic acid decarboxylase (GAD67), homeobox Dlx5/6, glutamate receptor 1 (GluR1), and preprotachykinin 1 (Tac1) genes. Neuron-specific enolase (NSE) and dopaminergic receptor 1 (Drd1a) promoters showed weak activity, but the integration of an amplification system into the LV overcame this limitation. In the striatum, the expression profiles of Tac1 and Drd1a were not limited to the striatonigral pathway, whereas in the hippocampus, Drd1a and Dlx5/6 showed the expected restricted pattern of expression. Regulation of the Dlx5/6 promoter was observed in a disease condition, whereas Tac1 activity was unaffected. These vectors provide safe tools that are more selective than others available, for the administration of therapeutic molecules in the central nervous system (CNS). Nevertheless, additional characterization of regulatory elements in neuronal promoters is still required.
Resumo:
The PPARs (peroxisome-proliferator-activated receptors) alpha, beta/delta and gamma belong to the nuclear hormone receptor superfamily. While all three receptors are undetectable in adult mouse interfollicular epidermis, PPARbeta expression and activity is strongly re-activated by inflammatory stimuli during epidermal injury. The pro-inflammatory cytokine TNFalpha (tumour necrosis factor alpha) stimulates transcription of the PPARbeta gene via an activator protein-1 site in its promoter and it also triggers the production of PPARbeta ligands in keratinocytes. This increase of PPARbeta activity in these cells up-regulates the expression of integrin-linked kinase and 3-phosphoinositide-dependent kinase-1, which phosphorylates protein kinase B-alpha (Akt1). The resulting increase in Akt1 activity suppresses apoptosis and ensures the presence of a sufficient number of viable keratinocytes at the wound margin for re-epithelialization. Together, these observations reveal that PPARbeta takes on multiple roles and contributes favourably to the process of wound closure.
Resumo:
Cells respond to different kind of stress through the coordinated activation of signaling pathways such as MAPK or p53. To find which molecular mechanisms are involved, we need to understand their cell adaptation. The ribosomal protein, S6 kinase 1 (S6K1), is a common downstream target of signaling by hormonal or nutritional stress. Here, we investigated the initial contribution of S6K1/MAPK signaling pathways in the cell response to oxidative stress produced by hydrogen peroxide (H2O2). To analyze S6K1 activation, we used the commercial anti-phospho-Thr389-S6K1 antibody most frequently mentioned in the bibliography. We found that this antibody detected an 80-90 kDa protein that was rapidly phosphorylated in response to H2O2 in several human cells. Unexpectedly, this phosphorylation was insensitive to both mTOR and PI3K inhibitors, and knock-down experiments showed that this protein was not S6K1. RSK and MSK proteins were candidate targets of this phosphorylation. We demonstrated that H2O2 stimulated phosphorylation of RSK and MSK kinases at residues that are homologous to Thr389 in S6K1. This phosphorylation required the activity of either p38 or ERK MAP kinases. Kinase assays showed activation of RSK and MSK by H2O2. Experiments with mouse embryonic fibroblasts from p38 animals" knockout confirmed these observations. Altogether, these findings show that the S6K1 signaling pathway is not activated under these conditions, clarify previous observations probably misinterpreted by non-specific detection of proteins RSK and MSK by the anti-phospho-Thr389-S6K1 antibody, and demonstrate the specific activation of MAPK signaling pathways through ERK/p38/RSK/MSK by H2O2.
Resumo:
Enhanced brain apoptosis (neurons and glia) may be involved in major depression (MD) and schizophrenia (SZ), mainly through the activation of the intrinsic (mitochondrial) apoptotic pathway. In the extrinsic death pathway, pro-apoptotic Fas-associated death domain (FADD) adaptor and its non-apoptotic p-Ser194 FADD form have critical roles interacting with other death regulators such as phosphoprotein enriched in astrocytes of 15kDa (PEA-15) and extracellular signal-regulated kinase (ERK). The basal status of FADD (protein and messenger RNA (mRNA)) and the effects of psychotropic drugs (detected in blood/urine samples) were first assessed in postmortem prefrontal cortex of MD and SZ subjects (including a non-MD/SZ suicide group). In MD, p-FADD, but not total FADD (and mRNA), was increased (26%, n=24; all MD subjects) as well as p-FADD/FADD ratio (a pro-survival marker) in antidepressant-free MD subjects (50%, n=10). In contrast, cortical FADD (and mRNA), p-FADD, and p-FADD/FADD were not altered in SZ brains (n=21) regardless of antipsychotic medications (except enhanced mRNA in treated subjects). Similar negative results were quantified in the non-MD/SZ suicide group. In MD, the regulation of multifunctional PEA-15 (i.e., p-Ser116 PEA-15 blocks pro-apoptotic FADD and PEA-15 prevents pro-survival ERK action) and the modulation of p-ERK1/2 were also investigated. Cortical p-PEA-15 was not changed whereas PEA-15 was increased mainly in antidepressant-treated subjects (16-20%). Interestingly, cortical p-ERK1/2/ERK1/2 ratio was reduced (33%) in antidepressant-free when compared to antidepressant-treated MD subjects. The neurochemical adaptations of brain FADD (increased p-FADD and pro-survival p-FADD/FADD ratio), as well as its interaction with PEA-15, could play a major role to counteract the known activation of the mitochondrial apoptotic pathway in MD.
Resumo:
SUMMARY Regulation of sodium excretion by the kidney is a key mechanism in the long term regulation of blood pressure, and when altered it constitutes a risk factor for the appearance of arterial hypertension. Aldosterone, which secretion depends upon salt intake in the diet, is a steroid hormone that regulates sodium reabsorption in the distal part of the nephron (functional unit of the kidney) by modulating gene transcription. It has been shown that it can act synergistically with the peptidic hormone insulin through the interaction of their signalisation pathways. Our work consisted of two distinct parts: 1) the in vitro and in vivo characterisation of Glucocorticoid-Induced Leucine Zipper (GILZ) (an aldosterone-induced gene) mechanism of action; 2) the in vitro characterisation of insulin mechanism of action and its interaction with aldosterone. GILZ mRNA, coded by the TSC22D3 gene, is strongly induced by aldosterone in the cell line of principal cells of the cortical collecting duct (CCD) mpkCCDc14, suggesting that GILZ is a mediator of aldosterone response. Co-expression of GILZ and the amiloride-sensitive epithelial sodium channel ENaC in vitro in the Xenopus oocyte expression system showed that GILZ has no direct effect on the ENaC-mediated Na+ current in basal conditions. To define the role of GILZ in the kidney and in other organs (colon, heart, skin, etc.), a conditional knock-out mouse is being produced and will allow the in vivo study of its role. Previous data showed that insulin induced a transepithelial sodium transport at supraphysiological concentrations. Insulin and the insulin-like growth factor 1 (IGF-1) are able to bind to each other receptor with an affinity 50 to 100 times lower than to their cognate receptor. Our starting hypothesis was that the insulin effect observed at these supraphysiological concentrations is actually mediated by the IGF receptor type 1 (IGF-1R). In a new cell line that presents all the characteristics of the principal cells of the CCD (mCCDc11) we have shown that both insulin and IGF-1 induce a physiologically significant increase of Na+ transport through the activation of IGF-1R. Aldosterone and insulin/IGF-1 have an additive effect on Na+ transport, through the activation of the PI3-kinase (PI3-K) pathway and the phosphorylation of the serum- and glucocorticoid-induced kinase 1 (Sgk1) by the IGF-1R, and the induction of Sgk1 expression by aldosterone. Thus, Sgk1 integrates IGF-1/insulin and aldosterone effects. We suggest that IGF-1 is physiologically relevant in the modulation of sodium balance, while insulin can only regulate Na+ transport at supraphysiological conditions. Both hormones would bind to the IGF-1R and induce Na+ transport by activating the PI3-K PDK1/2 - Sgk1 pathway. We have shown for the first time that Sgk1 is expressed and phosphorylated in principal cells of the CCD in basal conditions, although the mechanism that maintains Sgk1 phosphorylation is not known. This new role for IGF-1 suggests that it could be a salt susceptibility gene. In effect, IGF-1 stimulates Na+ and water transport in the kidney in vivo. Moreover, 35 % of the acromegalic patients (overproduction of growth hormone and IGF-1) are hypertensives (higher proportion than in normal population), and genetic analysis suggest a link between the IGF-1 gene locus and blood pressure. RÉSUMÉ La régulation de l'excrétion rénale de sodium (Na+) joue un rôle principal dans le contrôle à long terme de la pression sanguine, et ses altérations constituent un facteur de risque de l'apparition d'une hypertension artérielle. L'aldosterone, dont la sécrétion dépend de l'apport en sel dans la diète, est une hormone stéroïdienne qui régule la réabsorption de Na+ dans la partie distale du nephron (unité fonctionnelle du rein) en contrôlant la transcription de gènes. Elle peut agir de façon synergistique avec l'hormone peptidique insuline, probablement via l'interaction de leurs voies de signalisation cellulaire. Le but de notre travail comportait deux volets: 1) caractériser in vitro et in vivo le mécanisme d'action du Glucocorticoid Induced Leucine Zipper (GILZ) (un gène induit par l'aldosterone); 2) caractériser in vitro le mécanisme d'action de l'insuline et son interaction avec l'aldosterone. L'ARNm de GILZ, codé par le gène TSC22D3, est induit par l'aldosterone dans la lignée cellulaire de cellules principales du tubule collecteur cortical (CCD) mpkCCDc14, suggérant que GILZ est un médiateur potentiel de la réponse à l'aldosterone. La co-expression in vitro de GILZ et du canal à Na+ sensible à l'amiloride ENaC dans le système d'expression de l'oocyte de Xénope a montré que GILZ n'a pas d'effet sur les courants sodiques véhiculées par ENaC en conditions basales. Une souris knock-out conditionnelle de GILZ est en train d'être produite et permettra l'étude in vivo de son rôle dans le rein et d'autres organes. Des expériences préliminaires ont montré que l'insuline induit un transport transépithelial de Na+ à des concentrations supraphysiologiques. L'insuline et l'insulin-like growth factor 1 (IGF-1) peuvent se lier à leurs récepteurs réciproques avec une affinité 50 à 100 fois moindre qu'à leur propre récepteur. Nous avons donc proposé que l'effet de l'insuline soit médié par le récepteur à l'IGF type 1 (IGF-1R). Dans une nouvelle lignée cellulaire qui présente toutes les caractéristiques des cellules principales du CCD (mCCDc11) nous avons montré que les deux hormones induisent une augmentation physiologiquement significative du transport du Na+ par l'activation des IGF-1 R. Aldosterone et insuline/IGF-1 ont un effet additif sur le transport de Na+, via l'activation de la voie de la PI3-kinase et la phosphorylation de la serum- and glucocorticoid-induced kinase 1 (Sgk1) par l'IGF-1R, dont l'expression est induite par l'aldosterone. Sgk1 intègre les effets de l'insuline et l'aldosterone. Nous proposons que l'IGF-1 joue un rôle dans la modulation physiologique de la balance sodique, tandis que l'insuline régule le transport de Na+ à des concentrations supraphysiologiques. Les deux hormones agissent en se liant à l'IGF-1R et induisent le transport de Na+ en activant la cascade de signalisation PI3-K - PDK1/2 - Sgk1. Nous avons montré pour la première fois que Sgk1 est exprimée et phosphorylée dans des conditions basales dans les cellules principales du CCD, mais le mécanisme qui maintient sa phosphorylation n'est pas connu. Ce nouveau rôle pour l'IGF-1 suggère qu'il pourrait être un gène impliqué de susceptibilité au sel. Aussi, l'IGF-1 stimule le transport rénal de Na+ in vivo. De plus, 35 % des patients atteints d'acromégalie (surproduction d'hormone de croissance et d'IGF-1) sont hypertensifs (prévalence plus élevée que la population normale), et des analyses génétiques suggèrent un lien entre le locus du gène de l'IGF-1 et la pression sanguine. RÉSUMÉ GRAND PUBLIC Nos ancêtres se sont génétiquement adaptés pendant des centaines de millénaires à un environnement pauvre en sel (chlorure de sodium) dans la savane équatoriale, où ils consommaient moins de 0,1 gramme de sel par jour. On a commencé à ajouter du sel aux aliments avec l'apparition de l'agriculture (il y a 5000 à 10000 années), et aujourd'hui une diète omnivore, qui inclut des plats préparés, contient plusieurs fois la quantité de sodium nécessaire pour notre fonction physiologique normale (environ 10 grammes par jour). Le corps garde sa concentration constante dans le sang en s'adaptant à une consommation très variable de sel. Pour ceci, il module son excrétion soit directement, soit en sécrétant des hormones régulatrices. Le rein joue un rôle principal dans cette régulation puisque l'excrétion urinaire de sel change selon la diète et peut aller d'une quantité dérisoire à plus de 36 grammes par jour. L'attention qu'on prête au sel est liée à sa relation avec l'hypertension essentielle. Ainsi, le contrôle rénal de l'excrétion de sodium et d'eau est le principal mécanisme dans la régulation de la pression sanguine, et une ingestion excessive de sel pourrait être l'un des facteurs-clé déclenchant l'apparition d'un phénotype hypertensif. L'hormone aldosterone diminue l'excrétion de sodium par le rein en modulant l'expression de gènes qui pourraient être impliqués dans la sensibilité au sel. Dans une lignée cellulaire de rein l'expression du gène TSC22D3, qui se traduit en la protéine Glucocorticoid Induced Leucine Zipper (GILZ), est fortement induite par l'aldosterone. Ceci suggère que GILZ est un médiateur potentiel de l'effet de l'aldosterone, et pourrait être impliqué dans la sensibilité au sel. Pour analyser la fonction de GILZ dans le rein plusieurs approches ont été utilisées. Par exemple, une souris dans laquelle GILZ est spécifiquement inactivé dans le rein est en train d'être produite et permettra l'étude du rôle de GILZ dans l'organisme. De plus, on a montré que GILZ, en conditions basales, n'a pas d'effet direct sur la protéine transportant le sodium à travers la membrane des cellules, le canal sodique épithélial ENaC. On a aussi essayé de trouver des protéines qui interagissent directement avec GILZ utilisant une technique appelée du « double-hybride dans la levure », mais aucun candidat n'a émergé. Des études ont montré que, à de hautes concentrations, l'insuline peut aussi diminuer l'excrétion de sodium. A ces concentrations, elle peut activer son récepteur spécifique, mais aussi le récepteur d'une autre hormone, l'Insulin-Like Growth Factor 1 (IGF-1). En plus, l'infusion d'IGF-1 augmente la rétention rénale de sodium et d'eau, et des mutations du gène codant pour l'IGF-1 sont liées aux différents niveaux de pression sanguine. On a utilisé une nouvelle lignée cellulaire de rein développée dans notre laboratoire, appelée mCCDc11, pour analyser l'importance relative des deux hormones dans l'induction du transport de sodium. On a montré que les deux hormones induisent une augmentation significative du transport de sodium par l'activation de récepteurs à l'IGF-1 et non du récepteur à l'insuline. On a montré qu'à l'intérieur de la cellule leur activation induit une augmentation du transport sodique par le biais du canal ENaC en modifiant la quantité de phosphates fixés sur la protéine Serumand Glucocorticoid-induced Kinase 1 (Sgk1). On a finalement montré que l'IGF-1 et l'aldosterone ont un effet additif sur le transport de sodium en agissant toutes les deux sur Sgk1, qui intègre leurs effets dans le contrôle du transport de sodium dans le rein.
Resumo:
Activation of the Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) pathway is known to play a key role in cardiogenesis and to afford cardioprotection against ischemia-reperfusion in adult. However, involvement of JAK2/STAT3 pathway and its interaction with other signaling pathways in developing heart transiently submitted to anoxia remains to be explored. Hearts isolated from 4-day-old chick embryos were submitted to anoxia (30 min) and reoxygenation (80 min) with or without the antioxidant MPG, the JAK2/STAT3 inhibitor AG490 or the PhosphoInositide-3-Kinase (PI3K)/Akt inhibitor LY-294002. Time course of phosphorylation of STAT3α(tyrosine705) and Reperfusion Injury Salvage Kinase (RISK) proteins [PI3K, Akt, Glycogen Synthase Kinase 3beta (GSK3beta), Extracellular signal-Regulated Kinase 2 (ERK2)] was determined in homogenate and in enriched nuclear and cytoplasmic fractions of the ventricle. STAT3 DNA-binding was determined. The chrono-, dromo- and inotropic disturbances were also investigated by electrocardiogram and mechanical recordings. Phosphorylation of STAT3α(tyr705) was increased by reoxygenation, reduced (~50%) by MPG or AG490 but not affected by LY-294002. STAT3 and GSK3beta were detected both in nuclear and cytoplasmic fractions while PI3K, Akt and ERK2 were restricted to cytoplasm. Reoxygenation led to nuclear accumulation of STAT3 but unexpectedly without DNA-binding. AG490 decreased the reoxygenation-induced phosphorylation of Akt and ERK2 and phosphorylation/inhibition of GSK3beta in the nucleus, exclusively. Inhibition of JAK2/STAT3 delayed recovery of atrial rate, worsened variability of cardiac cycle length and prolonged arrhythmias as compared to control hearts. Thus, besides its nuclear translocation without transcriptional activity, oxyradicals-activated STAT3α can rapidly interact with RISK proteins present in nucleus and cytoplasm, without dual interaction, and reduce the anoxia-reoxygenation-induced arrhythmias in the embryonic heart.
Resumo:
The collecting duct of normal kidney exhibits significant activity of the MEK1/2-ERK1/2 pathway as shown in vivo by immunostaining of phosphorylated active ERK1/2 (pERK1/2). The MEK1/2-ERK1/2 pathway controls many different ion transports both in proximal and distal nephron, raising the question of whether this pathway is involved in the basal and/or hormone-dependent transepithelial sodium reabsorption in the principal cell of the cortical collecting duct (CCD), a process mediated by the apical epithelial sodium channel and the basolateral sodium pump (Na,K-ATPase). To answer this question we used ex vivo microdissected CCDs from normal mouse kidney or in vitro cultured mpkCCDcl4 principal cells. Significant basal levels of pERK1/2 were observed ex vivo and in vitro. Aldosterone and vasopressin, known to up-regulate sodium reabsorption in CCDs, did not change ERK1/2 activity either ex vivo or in vitro. Basal and aldosterone- or vasopressin-stimulated sodium transport was down-regulated by the MEK1/2 inhibitor PD98059, in parallel with a decrease in pERK1/2 in vitro. The activity of Na,K-ATPase but not that of epithelial sodium channel was inhibited by MEK1/2 inhibitors in both unstimulated and aldosterone- or vasopressin-stimulated CCDs in vitro. Cell surface biotinylation showed that intrinsic activity rather than cell surface expression of Na,K-ATPase was controlled by pERK1/2. PD98059 also significantly inhibited the activity of Na,K-ATPase ex vivo. Our data demonstrate that the ERK1/2 pathway controls Na,K-ATPase activity and transepithelial sodium transport in the principal cell and indicate that basal constitutive activity of the ERK1/2 pathway is a critical component of this control.
Resumo:
Abstract Background: Micro RNAs are small, non-coding, single-stranded RNAs that negatively regulate gene expression at the post-transcriptional level. Since miR-143 was found to be down-regulated in prostate cancer cells, we wanted to analyze its expression in human prostate cancer, and test the ability of miR-43 to arrest prostate cancer cell growth in vitro and in vivo. Results: Expression of miR-143 was analyzed in human prostate cancers by quantitative PCR, and by in situ hybridization. miR-143 was introduced in cancer cells in vivo by electroporation. Bioinformatics analysis and luciferase-based assays were used to determine miR-143 targets. We show in this study that miR-143 levels are inversely correlated with advanced stages of prostate cancer. Rescue of miR-143 expression in cancer cells results in the arrest of cell proliferation and the abrogation of tumor growth in mice. Furthermore, we show that the effects of miR-143 are mediated, at least in part by the inhibition of extracellular signal-regulated kinase-5 (ERK5) activity. We show here that ERK5 is a miR-143 target in prostate cancer. Conclusions: miR-143 is as a new target for prostate cancer treatment.
Resumo:
Medulloblastoma (MB) is the most common malignant brain tumor in children and is associated with a poor outcome. cMYC amplification characterizes a subgroup of MB with very poor prognosis. However, there exist so far no targeted therapies for the subgroup of MB with cMYC amplification. Here we used kinome-wide RNA interference screening to identify novel kinases that may be targeted to inhibit the proliferation of c-Myc-overexpressing MB. The RNAi screen identified a set of 5 genes that could be targeted to selectively impair the proliferation of c-Myc-overexpressing MB cell lines: AKAP12 (A-kinase anchor protein), CSNK1α1 (casein kinase 1, alpha 1), EPHA7 (EPH receptor A7) and PCTK1 (PCTAIRE protein kinase 1). When using RNAi and a pharmacological inhibitor selective for PCTK1, we could show that this kinase plays a crucial role in the proliferation of MB cell lines and the activation of the mammalian target of rapamycin (mTOR) pathway. In addition, pharmacological PCTK1 inhibition reduced the expression levels of c-Myc. Finally, targeting PCTK1 selectively impaired the tumor growth of c-Myc-overexpressing MB cells in vivo. Together our data uncover a novel and crucial role for PCTK1 in the proliferation and survival of MB characterized by cMYC amplification.
Resumo:
Selektiivisten estrogeenireseptorin muuntelijoiden (serm) vaikutus rintasyöpäsolujen ja luun solujen kuolemaan Selektiiviset estrogeenireseptorin muuntelijat (SERMit) ovat ryhmä kemialliselta rakenteeltaan erilaisia yhdisteitä jotka sitoutuvat solunsisäisiin estrogeenireseptoreihin toimien joko estrogeenin kaltaisina yhdisteinä tai estrogeenin vastavaikuttajina. Tamoksifeeni on SERM –yhdiste, jota on jo pitkään käytetty estrogeenireseptoreita (ER) ilmentävän rintasyövän lääkehoidossa. Tamoksifeeni sekä estää rintasyöpäsolujen jakaantumista että toisaalta aikaansaa niiden apoptoosin eli ohjelmoidun solukuoleman muuntelemalla ER-välitteisesti kohdesolun geenien ilmentymistä. Viimeaikaiset tutkimustulokset ovat kuitenkin osoittaneet tamoksifeenilla olevan myös nopeampia, nongenomisia vaikutusmekanismeja. Tässä väitöskirjatyössä tutkimme niitä nopeita vaikutusmekanismeja joiden avulla tamoksifeeni vaikuttaa rintasyöpäsolujen elinkykyyn. Osoitamme että tamoksifeeni farmakologisina pitoisuuksina aikaansaa nopean mitokondriaalisen solukuolemaan johtavan signallointireitin aktivoitumisen rintasyöpäsoluissa. Tämän lisäksi tutkimme myös tamoksifeenin aiheuttamaan mitokondriovaurioon johtavia tekijöitä. Tutkimustuloksemme osoittavat että ER-positiivisissa rintasyöpäsoluissa tamoksifeeni indusoi pitkäkestoisen ERK-kinaasiaktivaation, joka voidaan estää 17-beta-estradiolilla. Tamoksifeenin aikaansaama nopea solukuolema on pääosin ER:sta riippumaton tapahtuma, mutta siihen voidaan vaikuttaa myös ER-välitteisin mekanismein. Sen sijaan epidermaalisen kasvutekijäreseptorin (EGFR) voitiin osoittaa osallistuvan tamoksifeenin nopeiden vaikutusten välittämiseen. Tämän lisäksi vertailimme myös estradiolin ja eri SERM-yhdisteiden kykyä suojata apoptoosilta käyttämällä osteoblastiperäisiä soluja. Pytyäksemme vertailemaan ER-isotyyppien roolia eri yhdisteiden suojavaikutuksissa, transfektoimme U2OS osteosarkoomasolulinjan ilmentämään pysyvästi joko ERalfaa tai ERbetaa. Tulostemme mukaan sekä estradioli että uusi SERM-yhdiste ospemifeeni suojaavat osteoblastin kaltaisia soluja etoposidi-indusoidulta apoptoosilta. Sekä ERalfa että ERbeta pystyivät välittämään suojavaikutusta, joskin vaikutukset erosivat toisistaan. Lisäksi havaitsimme edellä mainitun suojavaikutuksen olevan yhteydessä muutoksiin solujen sytokiiniekspressiossa. Tietoa SERM-yhdisteiden anti-ja proapoptoottisten vaikutusmekanismeista eri kohdekudoksissa voidaan mahdollisesti hyödyntää kehiteltäessä uusia kudosspesifisiä SERM-yhdisteitä.
Resumo:
BACKGROUND: Several subsets of non-small-cell lung cancer (NSCLC) are defined by molecular alterations acting as tumor drivers, some of them being currently therapeutically actionable. The rat sarcoma (RAS)-rapidly accelerated fibrosarcoma (RAF)-mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) pathway constitutes an attractive potential target, as v-Raf murine sarcoma viral oncogene homolog B (BRAF) mutations occur in 2-4% of NSCLC adenocarcinoma. METHODS: Here, we review the latest clinical data on BRAF serine/threonine kinase inhibitors in NSCLC. RESULTS: Treatment of V600E BRAF-mutated NSCLC with BRAF inhibitor monotherapy demonstrated encouraging antitumor activity. Combination of BRAF and MEK inhibitors using dabrafenib and trametinib is under evaluation. Preliminary data suggest superior efficacy compared with BRAF inhibitor monotherapy. CONCLUSION: Targeting BRAF alterations represents a promising new therapeutic approach for a restricted subset of oncogene-addicted NSCLC. Prospect ive trials refining this strategy are ongoing. A next step will probably aim at combining BRAF inhibitors and immunotherapy or alternatively improve a multilevel mitogen-activated protein kinase (MAPK) pathway blockade by combining with ERK inhibitors.
Resumo:
Living organisms manage their resources in well evolutionary-preserved manner to grow and reproduce. Plants are no exceptions, beginning from their seed stage they have to perceive environmental conditions to avoid germination at wrong time or rough soil. Under favourable conditions, plants invest photosynthetic end products in cell and organ growth to provide best possible conditions for generation of offspring. Under natural conditions, however, plants are exposed to a multitude of environmental stress factors, including high light and insufficient light, drought and flooding, various bacteria and viruses, herbivores, and other plants that compete for nutrients and light. To survive under environmental challenges, plants have evolved signaling mechanisms that recognise environmental changes and perform fine-tuned actions that maintain cellular homeostasis. Controlled phosphorylation and dephosphorylation of proteins plays an important role in maintaining balanced flow of information within cells. In this study, I examined the role of protein phosphatase 2A (PP2A) on plant growth and acclimation under optimal and stressful conditions. To this aim, I studied gene expression profiles, proteomes and protein interactions, and their impacts on plant health and survival, taking advantage of the model plant Arabidopsis thaliana and the mutant approach. Special emphasis was made on two highly similar PP2A-B regulatory subunits, B’γ and B’ζ. Promoters of B’γ and B’ζ were found to be similarly active in the developing tissues of the plant. In mature leaves, however, the promoter of B’γ was active in patches in leaf periphery, while the activity of B’ζ promoter was evident in leaf edges. The partially overlapping expression patterns, together with computational models of B’γ and B’ζ within trimeric PP2A holoenzymes suggested that B’γ and B’ζ may competitively bind into similar PP2A trimmers and thus influence each other’s actions. Arabidopsis thaliana pp2a-b’γ and pp2a-b’γζ double mutants showed dwarfish phenotypes, indicating that B’γ and B’ζ are needed for appropriate growth regulation under favorable conditions. However, while pp2a-b’γ displayed constitutive immune responses and appearance of premature yellowings on leaves, the pp2a-b’γζ double mutant supressed these yellowings. More detailed analysis of defense responses revealed that B’γ and B’ζ mediate counteracting effects on salicylic acid dependent defense signalling. Associated with this, B’γ and B’ζ were both found to interact in vivo with CALCIUM DEPENDENT PROTEIN KINASE 1 (CPK1), a crucial element of salicylic acid signalling pathway against pathogens in plants. In addition, B’γ was shown to modulate cellular reactive oxygen species (ROS) metabolism by controlling the abundance of ALTERNATIVE OXIDASE 1A and 1D in mitochondria. PP2A B’γ and B’ζ subunits turned out to play crucial roles in the optimization of plant choices during their development. Taken together, PP2A allows fluent responses to environmental changes, maintenance of plant homeostasis, and grant survivability with minimised cost of redirection of resources from growth to defence.
Resumo:
It is well recognized that stressful experiences promote robust emotional memories, which are well remembered. The amygdaloid complex, principally the basolateral complex (BLA), plays a pivotal role in fear memory and in the modulation of stress-induced emotional responses. A large number of reports have revealed that GABAergic interneurons provide a powerful inhibitory control of the activity of projecting glutamatergic neurons in the BLA. Indeed, a reduced GABAergic control in the BLA is essential for the stress-induced influence on the emergence of associative fear memory and on the generation of long-term potentiation (LTP) in BLA neurons. The extracellular signal-regulated kinase (ERK) subfamily of the mitogen-activated protein kinase (MAPK) signaling pathway in the BLA plays a central role in the consolidation process and synaptic plasticity. In support of the view that stress facilitates long-term fear memory, stressed animals exhibited a phospho-ERK2 (pERK2) increase in the BLA, suggesting the involvement of this mechanism in the promoting influence of threatening stimuli on the consolidation fear memory. Moreover, the occurrence of reactivation-induced lability is prevented when fear memory is encoded under intense stressful conditions since the memory trace remains immune to disruption after recall in previously stressed animals. Thus, the underlying mechanism in retrieval-induced instability seems not to be functional in memories formed under stress. All these findings are indicative that stress influences both the consolidation and reconsolidation fear memory processes. Thus, it seems reasonable to propose that the emotional state generated by an environmental challenge critically modulates the formation and maintenance of long-term fear memory.