914 resultados para SI NANOPARTICLES
Resumo:
Échelle(s) : [1:1 460 500 environ], Scala di Miglia Italiane 60 [= 7,6 cm]
Resumo:
[Acte. 1726-10-29. Les Thuilleries]
Resumo:
[Traditions. Asie. Inde. Province de Madras [i.e. Chennai]]
Resumo:
Esophageal intramural pseudodiverticulosis is a rare pathology whose etiology is unknown, but which is frequently associated with three highly prevalent entities: esophageal reflux disease, esophageal candidosis and alcoholic esophagitis. With conservative treatment the course of these pathologies is usually benign. However, some severe cases are resistant to conservative treatment and may require more aggressive management. We here present the case of patient suffering from a severe esophagitis complicated by chronic mediastinitis with life-threatening repercussions, requiring esophagectomy as treatment.
Resumo:
BACKGROUND: Plasmid DNA vaccination is a promising approach, but studies in non-human primates and humans failed to achieve protective immunity. To optimise this technology further with focus on pulmonary administration, we developed and evaluated an adjuvant-equipped DNA carrier system based on the biopolymer chitosan. In more detail, the uptake and accompanying immune response of adjuvant Pam3Cys (Toll-like receptor-1/2 agonist) decorated chitosan DNA nanoparticles (NP) were explored by using a three-dimensional (3D) cell culture model of the human epithelial barrier. Pam3Cys functionalised and non-functionalised chitosan DNA NP were sprayed by a microsprayer onto the surface of 3D cell cultures and uptake of NP by epithelial and immune cells (blood monocyte-derived dendritic cells (MDDC) and macrophages (MDM)) was visualised by confocal laser scanning microscopy. In addition, immune activation by TLR pathway was monitored by analysis of interleukin-8 and tumor necrosis factor-α secretions (ELISA). RESULTS: At first, a high uptake rate into antigen-presenting cells (MDDC: 16-17%; MDM: 68-75%) was obtained. Although no significant difference in uptake patterns was observed for Pam3Cys adjuvant functionalised and non-functionalised DNA NP, ELISA of interleukin-8 and tumor necrosis factor-α demonstrated clearly that Pam3Cys functionalisation elicited an overall higher immune response with the ranking of Pam3Cys chitosan DNA NPâeuro0/00>âeuro0/00chitosan DNA NPâeuro0/00=âeuro0/00DNA unloaded chitosan NPâeuro0/00>âeuro0/00control (culture medium). CONCLUSIONS: Chitosan-based DNA delivery enables uptake into abluminal MDDC, which are the most immune competent cells in the human lung for the induction of antigen-specific immunity. In addition, Pam3Cys adjuvant functionalisation of chitosan DNA NP enhances significantly an environment favoring recruitment of immune cells together with a Th1 associated (cellular) immune response due to elevated IL-8 and TNF-α levels. The latter renders this DNA delivery approach attractive for potential DNA vaccination against intracellular pathogens in the lung (e.g., Mycobacterium tuberculosis or influenza virus).
Resumo:
Esta dissertação procura analisar, a partir de um estudo exploratório, a “representação de si” nas redes sociais, mais concretamente em torno dos membros de uma rede Facebook duma jovem cabo-verdiana a residir em Portugal. A problemática deste trabalho consiste em reflectir sobre a influência dos percursos individuais dos jovens na utilização do Facebook. Para isso, tivemos em conta variáveis como o sexo, o lugar de residência e a actividade académica/profissional, de modo a analisar a forma como são utilizadas este tipo de redes em contexto transnacional. Usadas sobretudo para estar em contacto com os familiares e falar com amigos, verificou-se todavia que os utilizadores recorrem a estratégias diferenciadas de acordo com os perfis individuais, mas também os contextos colectivos. Os Cabo-verdianos residentes passam menos tempo nessas redes, por razões sociais, económicas e culturais, do que os seus compatriotas a residirem em Portugal.
Resumo:
Nanoparticles (NPs) are in clinical use or under development for therapeutic imaging and drug delivery. However, relatively little information exists concerning the uptake and transport of NPs across human colon cell layers, or their potential to invade three-dimensional models of human colon cells that better mimic the tissue structures of normal and tumoral colon. In order to gain such information, the interactions of biocompatible ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) (iron oxide core 9-10 nm) coated with either cationic polyvinylamine (aminoPVA) or anionic oleic acid with human HT-29 and Caco-2 colon cells was determined. The uptake of the cationic USPIO NPs was much higher than the uptake of the anionic USPIO NPs. The intracellular localization of aminoPVA USPIO NPs was confirmed in HT-29 cells by transmission electron microscopy that detected the iron oxide core. AminoPVA USPIO NPs invaded three-dimensional spheroids of both HT-29 and Caco-2 cells, whereas oleic acid-coated USPIO NPs could only invade Caco-2 spheroids. Neither cationic aminoPVA USPIO NPs nor anionic oleic acid-coated USPIO NPs were transported at detectable levels across the tight CacoReady? intestinal barrier model or the more permeable mucus-secreting CacoGoblet? model.