928 resultados para SEMICRYSTALLINE POLYMER BLENDS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rheological properties of the blends of poly(aryl ether ether ketone) (PEEK) with liquid crystalline poly(aryl ether ketone) containing substituted 3-trifluoro-methylbenzene side group (F-PAEK), prepared by solution precipitation, have been investigated by rheometer. Dynamic rheological behaviors of the blends under the oscillatory shear mode are strongly dependent on blend composition. For PEEK-rich blends, the systems show flow curves similar to those of the pure PEEK, i.e., dynamic storage modulus G' is larger than dynamic loss modulus G", showing the feature of elastic fluid. For F-PAEK-rich systems, the rheological behavior of the blends has a resemblance to pure F-PAEK, i.e., G" is greater than G', showing the characteristic of viscous fluid. When the PEEK content is in the range of 50-70%, the blends exhibit an unusual rheological behavior, which is the result of phase inversion between the two components. Moreover, as a whole, the complex viscosity values of the blends are between those of two pure polymers and decrease with increasing F-PAEK content. However, at 50% weight fraction of PEEK, the viscosity-composition curves exhibit a local maximum, which may be mainly attributed to the phase separation of two components at such a composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maleic anhydride end capped poly(propylene carbonate) (PPC-MA) was blended with ethyl cellulose (EC) by casting from dichloromethane solutions. The thermotropic liquid crystallinity, thermal decomposition behavior, and aggregated structure were investigated by differential scanning calorimetry (DSC), thermogravimetry (TGA), and wide angle X-ray diffraction (WAXD). DSC exhibits thermotropic liquid crystallinity in the rich EC composition range. TGA shows that thermal decomposition temperatures were elevated upon interfusing EC into PPC-MA. WAXD corroborates that EC and PPC-MA/EC blend films cast from dilute dichloromethane solution possessed cholesteric liquid crystalline structure in the rich EC composition range, and that dilution of PPC-MA with EC increased the dimension of noncrystalline region, leading to a more ordered packed structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, ethylene-propylene-diene-rubber (EPDM) was epoxidized with an in situ formed performic acid to prepare epoxided EPDM (eEPDM). The eEPDM together with the introduction of PP-g-AA was used to compatibilize PP/EPDM blends in a Haake mixer. FTIR results showed that the EPDM had been epoxidized. The reaction between epoxy groups in the eEPDM and carboxylic acid groups in PP-g-AA had taken place, and PP-g-EPDM copolymers were formed in situ. Torque test results showed that the actual temperature and torque values for the compatibilized blends were higher than that of the uncompatibilized blends. Scanning electron microscopy (SEM) observation showed that the dispersed phase domain size of compatibilized blends and the uncompatibilized blends were 0.5 and 1.5 mu m, respectively. The eEPDM together with the introduction of PP-g-AA could compatibilize PP/EPDM blends effectively. Notched Izod impact tests showed that the formation of PP-g-EPDM copolymer improved the impact strength and yielded a tougher PP blend.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel wide-bandgap conjugated polymer (PDHFSCHD) consisting of alternating dihexylfluorene and rigidly twisted biphenyl units has been synthesized. The new fluorene-based copolymer composed of rigid twisting segments in the main-chain exhibits an optical bandgap of as high as 3.26 eV, and a highly efficient ultraviolet emission with peaks at 368 nm and 386 nm. An electroluminescence device from PDHFSCHD neat film as an active layer shows UV emission which peaks at 395 nm with a turn on voltage below 8 V By optimizing the device conditions, a peak EL quantum efficiency of 0.054% and brightness of 10 cd.m(-2) was obtained. Furthermore, blending a poly(dihexylfluorene) in the PDHFSCHD host gave pure blue emission peaking at 417 nm, and 440 nm without long wavelength emission from aggregated species. Efficient energy transfer from PDHFSCHD to PDHF was demonstrated in these blended systems. Depressed chain-aggregation of PDHF in the PDHFSCHD host can correspond to pure blue emission behaviors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blends of synthetic poly(propylene carbonate) (PPC) with a natural bacterial copolymer of 3-hydroxybutyrate with 3-hydroxyvalerate (PHBV) containing 8 mol % 3-hydroxyvalerate units were prepared with a simple casting procedure. PPC was thermally stabilized by end-capping before use. The miscibility, morphology, and crystallization behavior of the blends were investigated by differential scanning calorimetry, polarized optical microscopy, wide-angle X-ray diffraction (WAXD), and small-angle Xray scattering (SAXS). PHBV/PPC blends showed weak miscibility in the melt, but the miscibility was very low. The effect of PPC on the crystallization of PHBV was evident. The addition of PPC decreased the rate of spherulite growth of PHBV, and with increasing PPC content in the PHBV/PPC blends, the PHBV spherulites became more and more open. However, the crystalline structure of PHBV did not change with increasing PPC in the PHBV/PPC blends, as shown from WAXD analysis. The long period obtained from SAXS showed a small increase with the addition of PPC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The miscibility and structure of A-B copolymer/C homopolymer blends with special interactions were studied by a Monte Carlo simulation in two dimensions. The interaction between segment A and segment C was repulsive, whereas it was attractive between segment B and segment C. In order to study the effect of copolymer chain structure on the morphology and structure of A-B copolymer/C homopolymer blends, the alternating, random and block A-B copolymers were introduced into the blends, respectively. The simulation results indicated that the miscibility of A-B block copolymer/C homopolymer blends depended on the chain structure of the A-B copolymer. Compared with alternating or random copolymer, the block copolymer, especially the diblock copolymer, could lead to a poor miscibility of A-B copolymer/C homopolymer blends. Moreover, for diblock A-B copolymer/C homopolymer blends, obvious self-organized core-shell structure was observed in the segment B composition region from 20% to 60%. However, if diblock copolymer composition in the blends is less than 40%, obvious self-organized core-shell structure could be formed in the B-segment component region from 10 to 90%. Furthermore, computer statistical analysis for the simulation results showed that the core sizes tended to increase continuously and their distribution became wider with decreasing B-segment component.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cloud-point temperatures (T-cl's) of trans-decahydronaphthalene(TD)/polystyrene (PS, (M) over bar (w) = 270 000) solutions were determined by light scattering measurements over a range of temperatures (1-16degreesC), pressures (100-900 bar), and compositions (4.2-21.6 vol.-% polymer). The system phase separates upon cooling and T-cl was found to increase with rising pressure for constant composition. In the absence of special effects, this finding indicates positive excess volume for the mixing. Special attention was paid to the demixing temperatures as a function of pressure for different polymer solutions and the plots in the T-phi plane (where phi signifies volume fractions). The cloud-point curves of polymer solutions under different pressures were observed for different compositions, which demonstrated that pressure has a greater effect on the TD/PS solutions when far from the critical point as opposed to near the critical point. The Sanchez-Lacombe lattice fluid theory (SLLFT) was used to calculate the spinodals, the binodals, the Flory-Huggins (FH) interaction parameter, the enthalpy of mixing, and the volume changes of mixing. The calculated results show that modified PS scaling parameters can describe the thermodynamics of the TD/PS system well. Moreover the SLLFT describes the experimental results well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The experimental data of phase diagrams for both polyethylene oxide/poly(ethylene oxide-b-dimethylsiloxane) binary and toluene/polyethylene oxide/poly(ethylene oxide-b-dimethylsiloxane) ternary polymer-containing systems was obtained at atmosphere pressure by light scattering method. The critical points for some pre-selected compositions and the pressure effect on the phase transition behavior of ternary system were investigated by turbidity measurements. The chosen system is a mixture of ternary which is one of the very few abnormal polymer-containing systems exhibiting pressure-induced both miscibility and immiscibility. This unusual behavior is related to the toluene concentration in the mixtures. The effect of toluene on the phase transition behavior of the ternary polymer-containing mixture was traced. Such behavior can make it possible to process composite materials from incompatible polymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present calculations were performed on the basis of the Sanchez-Lacombe lattice fluid theory and the new combinatorial rules for block copolymer according to the experimental results on the pressure-induced compatibility in poly(ethylene oxide) (PEO) and poly(ethylene oxide-b-dimethylsiloxane) (P(EO-b-DMS)) mixtures with UCST behavior. The study on enthalpy, combinatorial entropy, vacancy entropy and Gibbs energy upon mixture shows that Sanchez-Lacombe fluid theory and the new combinatorial rules could describe the pressure-induced compatibility (PIC) of polymer mixtures with UCST behavior well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blends of linear low-density polyethylene (LLDPE) with polystyrene (PS) and blends of LLDPE with high-impact polystyrene (HIPS) were prepared through a reactive extrusion method. For increased compatibility of the two blending components, a Lewis acid catalyst, aluminum chloride (AlCl3), was adopted to initiate the Friedel-Crafts alkylation reaction between the blending components. Spectra data from Raman spectra of the LLDPE/PS/AlCl3 blends extracted with tetrahydrofuran verified that LLDPE segments were grafted to the para position of the benzene rings of PS, and this confirmed the graft structure of the Friedel-Crafts reaction between the polyolefin and PS. Because the in situ generated LLDPE-g-PS and LLDPE-g-HIPS copolymers acted as compatibilizers in the relative blending systems, the mechanical properties of the LLDPE/PS and LLDPE/HIPS blending systems were greatly improved. For example, after compatibilization, the Izod impact strength of an LLDPE/PS blend (80/20 w/w) was increased from 88.5 to 401.6 J/m, and its elongation at break increased from 370 to 790%. For an LLDPE/HIPS (60/40 w/w) blend, its Charpy impact strength was increased from 284.2 to 495.8 kJ/m(2). Scanning electron microscopy micrographs showed that the size of the domains decreased from 4-5 to less than 1 mum, depending on the content of added AlCl3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the basis of the thermodynamics of Gibbs, the spinodal for the quasibinary system was derived in the framework of the Sanchez-Lacombe lattice fluid theory. All of the spinodals were calculated based on a model polydisperse polymer mixture, where each polymer contains three different molecular weight subcomponents. According to our calculations, the spinodal depends on both weight-average ((M) over bar (w)) and number-average ((M) over bar (n)) molecular weights, whereas that of the z-average molecular weight is invisible. Moreover, the extreme of the spinodal decreases when the polydispersity index (eta = (M) over bar (w)/(M) over bar (n)) of the polymer increases. The effect of polydispersity on the spinodal decreases when the molecular weight gets larger and can be negligible at a certain large molecular weight. It is well-known that the influence of polydispersity on the phase equilibrium (coexisting curve, cloud point curves) is much more pronounced than on the spinodal. The effect of M, on the spinodal is discussed as it results from the infuluence of composition temperatures, molecular weight, and the latter's distribution on free volume. An approximate expression, which is in the assumptions of v* v(1)* = v(2)* and 1/r --> 0 for both of the polymers, was also derived for simplification. It can be used in high molecular weight, although it failed to make visible the effect of number-average molecular weight on the spinodal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(ethyl acrylate) (PEA)/SiO2 hybrids with different compositions were prepared under different casting temperatures and pH values. Their morphology as investigated by transmission electron microscopy (TEM) shows that samples with different compositions have different morphologies. When the SiO2 content is lower, PEA is the continuous phase and SiO2 is the dispersed phase. At higher SiO2 content, the change in phase morphology takes place, nd PEA gradually dispersing in the form of latex particles in SiO2 matrix. Change in phase morphology depends mainly on the time the sol-gel transition occurs. At suitable casting temperature and pH value, PEA/SiO2 in 95/5 and 50/50 hybrids with even dispersion was obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The miscibility and hydrogen-bonding interactions of carbon dioxide and epoxy propane copolymer to poly(propylene carbonate) (PPC)/poly(p-vinylphenol) (PVPh) blends were investigated with differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The single glass-transition temperature for each composition showed miscibility over the entire composition range. FTIR indicates the presence of strong hydrogen-bonding interassociation between the hydroxyl groups of PVPh and the oxygen functional groups of PPC as a function of composition and temperature. XPS results testify to intermolecular hydrogen-bonding interactions between the oxygen atoms of carbon-oxygen single bonds and carbon-oxygen double bonds in carbonate groups of PPC and the hydroxyl groups of PVPh by the shift of C-1s peaks and the evolution of three novel O-1s peaks in the blends, which supports the suggestion from FTIR analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on Takayanagi's two-phase model, a three-phase model including the matrix, interfacial region, and fillers is proposed to calculate the tensile modulus of polymer nanocomposites (E-c). In this model, fillers (sphere-, cylinder- or plate-shape) are randomly distributed in a matrix. If the particulate size is in the range of nanometers, the interfacial region will play an important role in the modulus of the composites. Important system parameters include the dispersed particle size (t), shape, thickness of the interfacial region (tau), particulate-to-matrix modulus ratio (E-d/E-m), and a parameter (k) describing a linear gradient change in modulus between the matrix and the surface of particle on the modulus of nanocomposites (E-c). The effects of these parameters are discussed using theoretical calculation and nylon 6/montmorillonite nanocomposite experiments. The former three factors exhibit dominant influence on E-c At a fixed volume fraction of the dispersed phase, smaller particles provide an increasing modulus for the resulting composite, as compared to the larger one because the interfacial region greatly affects E-c. Moreover, since the size of fillers is in the scale of micrometers, the influence of interfacial region is neglected and the deduced equation is reduced to Takayanagi's model. The curves predicted by the three-phase model are in good agreement with experimental results. The percolation concept and theory are also applied to analyze and interpret the experimental results.