979 resultados para SEASONAL-VARIATIONS
Resumo:
Tese de mestrado, Geologia Aplicada (Hidrogeologia) Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
Se estudió la influencia de las variaciones estacionales del nivel de agua sobre la reproducción y el crecimiento de Potamorhina altamazonica en el río Ucayali durante los años 2008-2012. Se observó que, la reproducción es de carácter estacional, que, tiene sincronía con el periodo de creciente (enero-marzo) alcanzado el ápice en febrero. Se estimó que las hembras alcanzan la talla media de primera madurez a los 17,8 cm y los machos a los 18,4 cm (Lt), en ambos casos a la edad teórica de un año. La mayor proporción de hembras respecto a los machos se observó en el periodo de transición a creciente, y viceversa en la creciente; mientras que el análisis anual mostró dominancia de hembras en los años 2008 y 2012. El análisis de la estructura de tallas mostró que el stock explotado estuvo compuesto por peces cuyas tallas oscilaron de 12,0 a 31,0 cm Lt y no se observaron fuertes fluctuaciones de la talla media anual. La ecuación de crecimiento de von Bertalanffy definida por Lt = 33,55*(1-e(-0,65(t-0,26)) permite estimar que la especie es de rápido crecimiento y que podría vivir en teoría 3,5 años. Los peces mostraron mejor condición o robustez en los periodos de transición a creciente y creciente, dado a que en estos, se inundan vastas áreas de bosques de llanura convirtiéndose en hábitats óptimos que favorecen la reproducción en los peces adultos y el crecimiento en los reclutas.
Resumo:
During four expeditions with RV "Polarstern" at the continental margin of the southern Weddell Sea, profiling and geological sampling were carried out. A detailed bathymetric map was constructed from echo-sounding data. Sub-bottom profiles, classified into nine echotypes, have been mapped and interpreted. Sedimentological analyses were carried out on 32 undisturbed box grab surface samples, as well as on sediment cores from 9 sites. Apart from the description of the sediments and the investigation of sedimentary structures on X-radiographs the following characteristics were determined: grain-size distributions; carbonate and Corg content; component distibutions in different grain-size fractions; stable oxygen and carbon isotopes in planktic and, partly, in benthic foraminifers; and physical properties. The stratigraphy is based On 14C-dating, oxygen isotope Stages and, at one site, On paleomagnetic measurements and 230Th-analyses The sediments represent the period of deposition from the last glacial maximum until recent time. They are composed predominantly of terrigenous components. The formation of the sediments was controlled by glaciological, hydrographical and gravitational processes. Variations in the sea-ice coverage influenced biogenic production. The ice sheet and icebergs were important media for sediment transport; their grounding caused compaction and erosion of glacial marine sediments on the outer continental shelf. The circulation and the physical and chemical properties of the water masses controlled the transport of fine-grained material, biogenic production and its preservation. Gravitational transport processes were the inain mode of sediment movements on the continental slope. The continental ice sheet advanced to the shelf edge and grounded On the sea-floor, presumably later than 31,000 y.B.P. This ice movement was linked with erosion of shelf sediments and a very high sediment supply to the upper continental slope from the adiacent southern shelf. The erosional surface On the shelf is documented in the sub-bottom profiles as a regular, acoustically hard reflector. Dense sea-ice coverage above the lower and middle continental slope resulted in the almost total breakdown of biogenic production. Immediately in front of the ice sheet, above the upper continental slope, a <50 km broad coastal polynya existed at least periodically. Biogenic production was much higher in this polynya than elsewhere. Intense sea-ice formation in the polynya probably led to the development of a high salinity and, consequently, dense water mass, which flowed as a stream near bottom across the continental slope into the deep sea, possibly contributing to bottom water formation. The current velocities of this water mass presumably had seasonal variations. The near-bottom flow of the dense water mass, in combination with the gravity transport processes that arose from the high rates of sediment accumulation, probably led to erosion that progressed laterally from east to West along a SW to NE-trending, 200 to 400 m high morphological step at the continental slope. During the period 14,000 to 13,000 y.B.P., during the postglacial temperature and sea-level rise, intense changes in the environmental conditions occured. Primarily, the ice masses on the outer continental shelf started to float. Intense calving processes resulted in a rapid retreat of the ice edge to the south. A consequence of this retreat was, that the source area of the ice-rafted debris changed from the adjacent southern shelf to the eastern Weddell Sea. As the ice retreated, the gravitational transport processes On the continental slope ceased. Soon after the beginning of the ice retreat, the sea-ice coverage in the whole research area decreased. Simultaneously, the formation of the high salinity dense bottom water ceased, and the sediment composition at the continental slope then became influenced by the water masses of the Weddell Gyre. The formation of very cold Ice Shelf Water (ISW) started beneath the southward retreating Filchner-Ronne Ice Shelf somewhat later than 12,000 y.B.P. The ISW streamed primarily with lower velocities than those of today across the continental slope, and was conducted along the erosional step on the slope into the deep sea. At 7,500 y.B.P., the grounding line of the ice masses had retreated > 400 km to the south. A progressive retreat by additional 200 to 300 km probably led to the development of an Open water column beneath the ice south of Berkner Island at about 4,000 y.B.P. This in turn may have led to an additional ISW, which had formed beneath the Ronne Ice Shelf, to flow towards the Filcher Ice Shelf. As a result, increased flow of ISW took place over the continental margin, possibly enabling the ISW to spill over the erosional step On the upper continental slope towards the West. Since that time, there is no longer any documentation of the ISW in the sedimentary Parameters on the lower continental slope. There, recent sediments reflect the lower water masses of the Weddell Gyre. The sea-ice coverage in early Holocene time was again so dense that biogenic production was significantly restricted.
Resumo:
On the continental margin of the southeastern Weddell Sea, Antarctica, several channel-ridge systems can be traced on the eastern side of the Crary Fan. Swath mapping of the bathymetry reveals three southwest-northeast trending ridges up to 300 m high with channels on their southeastern side. The structures occur on a terrace of the continental slope in water depths of 2000 - 3300 m. We carried out sedimentological studies on cores from three sites. Two of the studied cores are from ridges, one is from the northwestern part of the terrace. The stratigraphy of the recovered sediments is based on accelerator mass spectrometer 14C determinations, stable oxygen and carbon isotopes analyses and paleomagnetic measurements. The sediments represent a period from the last glacial maximum (LGM) to recent time. They are composed predominantly of terrigenous components. We distinguish four different sedimentary facies and assign them to processes controlling sedimentation. Microlaminated muds and cross-stratified coarse-silty sediments originated from contour currents. Bioturbated sediments reflect the increasing influence of hemipelagic sedimentation. Structureless sediments with high contents of ice-rafted debris characterize slumps. The inferred contour currents shaping the continental slope during the LGM were canalized within the channels and supplied microlaminated mud to the western sedimentary ridges due to deflection to the left induced by the Coriolis force. The lamination of the sediments is attributed to seasonal variations of current velocities. The thermohaline bottom currents were directed to the northeast and hence opposite to the Weddell Gyre. Cross-stratified coarse-silty contourites on the ridges are intercalated with the muds and indicate spillover of faster thermohaline flows. Average sedimentation rates on the terrace of the continental slope were unusually high (250 cm/ka) during the LGM, indicating active growth phases of the Crary Fan during glacial intervals. A substantial environmental change at 19.5 - 20 ka is documented in the sediments by a gradual change from lamination to bioturbation. During the recent interglacial, bioturbated sediments were deposited in all parts of the terrace. Because of a reduction of the contour current velocities (4-7 cm/s), the water masses of the Weddell Gyre, supplying fine-grained sediments from northeast, gain a greater influence on sedimentation on the continental slope. Higher percentages of microfossils indicate enhanced biogenic productivity. Increased iceberg activity is documented by greater amounts of ice-rafted debris. The interglacial sedimentation rates decrease to a few cm/ka and indicate that the Crary Fan became relatively sediment-starved during interglacial intervals.
Resumo:
Calculated and measured estimations of biomass of small (<3 mm), large (3-30 mm), and total zooplankton were verified (compared). These integral parameters of epipelagic communities were estimated by two methods. We used previously obtained regression equations, which correlate these parameters with water transparency. Measured values of aforesaid parameters were compared with their mean values in waters of different productivity estimated from NASA satellite maps. We compared data collected at fifteen stations in September-December in regions of different productivity in the North Atlantic. In warm regions (to the south of 40°N) measured and calculated values coincide well. In boreal regions in autumn bulk of mesozooplankton descends to deep layers due to seasonal migrations; hence correlation between measured and calculated values is disrupted. It is evident that correlation between water transparency and mesozooplankton biomass (integral index of water productivity) obtained before should be corrected for seasonal variations.
Resumo:
We analysed long-chain alkenones in sinking particles and surface sediments from the filamentous upwelling region off Cape Blanc, NW Africa, to evaluate the transfer of surface water signals into the geological record. Our study is based on time-series sediment trap records from 730 m (1990-1991) to 2195-3562 m depth (1988-1991). Alkenone fluxes showed considerable interannual variations and no consistent seasonality. The average flux of C37 and C38 alkenones to the deep traps was 1.9 µg/m**2/d from March 1988 to October 1990 and sevenfold higher in the subsequent year. Alkenone fluxes to the shallower traps were on average twice as high and showed similar temporal variations. The alkenone unsaturation indices UK'37, UK38Me and UK38Et closely mirrored the seasonal variations in sea-surface temperature (weekly Reynolds SST). Time lags of 10-48 days between the SST and unsaturation maxima suggest particle sinking rates of about 80 and 280 m/d for the periods of low and high alkenone fluxes, respectively. The average flux-weighted UK'37 temperature for the 4-year time series of the deeper traps was 22.1°C, in perfect agreement with the mean weekly SST for the same period. This and the comparison with seasonal temperature variations in the upper 100 m of the water column suggests that UK'37 records principally the yearly average of the mixed-layer temperature in this region. A comparison between the average annual alkenone fluxes to the lower traps (2400 µg/m**2/yr) and into the underlying sediments (4 µg/m**2/yr) suggests that only about 0.2% of the alkenones reaching the deep ocean became preserved in the sediments. The flux-weighted alkenone concentrations also decreased considerably, from 2466 µg/gC in the water column to 62 µg/gC in the surface sediments. Such a low degree of alkenone preservation is typical for slowly accumulating oxygenated sediments. Despite these dramatic diagenetic alkenone losses, the UK'37 ratio was not affected. The average UK'37 value of the sediments (0.796±0.010 or 22.3±0.3°C) was identical within error limits to the 4-year average of the lower traps. The unsaturation indices for C38 alkenones and the ratio between C37 and C38 alkenones also revealed a high degree of stability. Our results do not support the hypothesis that UK'37 is biased towards higher values during oxic diagenesis.
Resumo:
Fe-Mn-concretions of a spheroidal type were found according to electron probe determinations to consist of alternating iron- and manganese-rich layers. This pattern was ascribed to seasonal variations in the physico-chemical conditions governing the precipitation of the hydrous oxides of iron and manganese. Calculations based on the rhythmic growth of the concretions investigated gave a mean accumulation rate of 0.15-0.20 mm/yr. The rather high phosphorus content (average 3.5 % P2O5) of the concretions was found to be concentrated in the iron-rich layers, probably as a result of the scavenging effect of ferric hydroxide.
Resumo:
Beach profile lines at 21 near-evenly spaced intervals along Holden Beach, North Carolina, between Lockwoods Folly and Shallotte Inlets, were measured from November 1970 to December 1974. These have been analyzed to determine the spatial and temporal variabilities on long-term, seasonal, and short-term scales. Profile lines near the inlets showed the greatest variability in mean sea level (MSL) position, above MSL volume, foreshore slope, and profile envelope. This variability near Lockwoods Folly Inlet was partly enhanced by artificial nourishment at profile line 2. Temporary, low-cost shore protection devices (e.g., sandbag groins) were constructed near that inlet during part of the study. No other modifications or activities that affected beach processes were known to occur during the study period. The central part of Holden Beach was studied separately because of the high variability of the inlet sections at either end of the island. Foreshore slopes along this reach increased from an average of 1:30 at the east end to 1:17 at the west. A seasonal change in above MSL volume indicates loss of sand during autumn and winter, and gain during spring and summer. Changes in MSL shoreline intercept and above MSL volume were highly variable during the study.
Resumo:
In boreal bogs plant species are low in number, but they differ greatly in their growth forms and photosynthetic properties. We assessed how ecosystem carbon (C) sink dynamics were affected by seasonal variations in photosynthetic rate and leaf area of different species. Photosynthetic properties (light-response parameters), leaf area development and areal cover (abundance) of the species were used to quantify species-specific net and gross photosynthesis rates (PN and PG, respectively), which were summed to express ecosystem-level PN and PG. The ecosystem-level PG was compared with a gross primary production (GPP) estimate derived from eddy covariance measurements (EC). Species areal cover rather than differences in photosynthetic properties determined the species with the highest PG of both vascular plants and Sphagna. Species-specific contributions to the ecosystem PG varied over the growing season, which in turn determined the seasonal variation in ecosystem PG. The upscaled growing-season PG estimate, 230 g C/m**2, agreed well with the GPP estimated by the EC, 243 g C/m**2. Sphagna were superior to vascular plants in ecosystem-level PG throughout the growing season but had a lower PN. PN results indicated that areal cover of the species together with their differences in photosynthetic parameters shape the ecosystem-level C balance. Species with low areal cover but high photosynthetic efficiency appear to be potentially important for the ecosystem C sink. Results imply that functional diversity may increase the stability of C sink of boreal bogs.
Resumo:
Study objective: To investigate the association between cold periods and coronary events, and the extent to which climate, sex, age, and previous cardiac history increase risk during cold weather. Design: A hierarchical analyses of populations from the World Health Organisation's MONICA project. Setting: Twenty four populations from the WHO's MONICA project, a 21 country register made between 1980 and 1995. Patients: People aged 35 - 64 years who had a coronary event. Main results: Daily rates of coronary events were correlated with the average temperature over the current and previous three days. In cold periods, coronary event rates increased more in populations living in warm climates than in populations living in cold climates, where the increases were slight. The increase was greater in women than in men, especially in warm climates. On average, the odds for women having an event in the cold periods were 1.07 higher than the odds for men (95% posterior interval: 1.03 to 1.11). The effects of cold periods were similar in those with and without a history of a previous myocardial infarction. Conclusions: Rates of coronary events increased during comparatively cold periods, especially in warm climates. The smaller increases in colder climates suggest that some events in warmer climates are preventable. It is suggested that people living in warm climates, particularly women, should keep warm on cold days.
Resumo:
Phenolic compounds constitute 50-70% of tea water extract and are the main quality parameters for teas. Theaflavins (TF), thearubigins (TR) and theabrownins (TB) are the major polyphenols that determine the quality of black tea. These compounds were measured in 56 leaf teas and teabags sampled from Australian supermarkets in Queensland. The various quantities of TF, ranging from 0.29% to 1.25%, indicate a quality difference that exists among the teas studied. Low TF content in black tea may be due to over-fermenting and/or long periods of storage. The solubility of TR and TB from teabags ranged from 82% to 92%, indicating that the permeability of teabags was variable. Variable quantities of TF in Australian teas show instability and a tendency of TF to oxidize during storage. Total polyphenols in green teas ranged from 14% to 34%, indicating a large variation, which was not reflected in price. The solubility of total polyphenols from teabags has been proposed as a useful quality index of the filtering paper used for the teabags. This chemical analysis of phenolic compounds in commercial teas may be a potential tool for the quality control of Australian manufactured and imported teas in Australian markets. (C) 2005 Elsevier Ltd. All rights reserved.
Patterns of nutrient exchange in a riverine mangrove forest in the Shark River Estuary, Florida, USA
Resumo:
This study aimed to evaluate tidal and seasonal variations in concentrations and fluxes of nitrogen (NH4 +, NO2+NO3, total nitrogen) and phosphorus (soluble reactive phosphorus, total phosphorus) in a riverine mangrove forest using the flume technique during the dry (May, December 2003) and rainy (October 2003) seasons in the Shark River Estuary, Florida. Tidal water temperatures during the sampling period were on average 29.4 (± 0.4) oC in May and October declining to 20 oC (± 4) in December. Salinity values remained constant in May (28 ± 0.12 PSU), whereas salinity in October and December ranged from 6‒21 PSU and 9‒25 PSU, respectively. Nitrate + nitrite (N+N) and NH4+ concentrations ranged from 0.0 to 3.5 μM and from 0 to 4.8 μM throughout the study period, respectively. Mean TN concentrations in October and December were 39 (±0.8) μM and 37 (±1.5) μM, respectively. SRP and N+N concentrations in the flume increased with higher frequency in flooding tides. TP concentrations ranged between 0.2‒2.9 μM with higher concentrations in the dry season than in the rainy season. Mean concentrations were <1. 5 μM during the sampling period in October (0.75 ± 0.02) and December (0.76 ± 0.01), and were relatively constant in both upstream and downstream locations of the flume. Water residence time in the flume (25 m2) was relatively short for any nutrient exchange to occur between the water column and the forest floor. However, the distinct seasonality in nutrient concentrations in the flume and adjacent tidal creek indicate that the Gulf of Mexico is the main source of SRP and N+N into the mangrove forest.
Resumo:
This study shows that light exposure of flocculent material (floc) from the Florida Coastal Everglades (FCE) results in significant dissolved organic matter (DOM) generation through photo-dissolution processes. Floc was collected at two sites along the Shark River Slough (SRS) and irradiated with artificial sunlight. The DOM generated was characterized using elemental analysis and excitation emission matrix fluorescence coupled with parallel factor analysis. To investigate the seasonal variations of DOM photo-generation from floc, this experiment was performed in typical dry (April) and wet (October) seasons for the FCE. Our results show that the dissolved organic carbon (DOC) for samples incubated under dark conditions displayed a relatively small increase, suggesting that microbial processes and/or leaching might be minor processes in comparison to photo-dissolution for the generation of DOM from floc. On the other hand, DOC increased substantially (as much as 259 mgC gC−1) for samples exposed to artificial sunlight, indicating the release of DOM through photo-induced alterations of floc. The fluorescence intensity of both humic-like and protein-like components also increased with light exposure. Terrestrial humic-like components were found to be the main contributors (up to 70%) to the chromophoric DOM (CDOM) pool, while protein-like components comprised a relatively small percentage (up to 16%) of the total CDOM. Simultaneously to the generation of DOC, both total dissolved nitrogen and soluble reactive phosphorus also increased substantially during the photo-incubation period. Thus, the photo-dissolution of floc can be an important source of DOM to the FCE environment, with the potential to influence nutrient dynamics in this system.
Resumo:
Short-term (daily) and seasonal variations in concentration and flux of dissolved organic carbon (DOC) were examined over 15 tidal cycles in a riverine mangrove wetland along Shark River, Florida in 2003. Due to the influence of seasonal rainfall and wind patterns on Shark River’s hydrology, samplings were made to include wet, dry and transitional (Norte) seasons. We used a flume extending from a tidal creek to a basin forest to measure vertical (vegetated soil/water column) and horizontal (mangrove forest/tidal creek) flux of DOC. We found significant (p < 0.05) variations in surface water temperature, salinity, conductivity, pH and mean concentration of DOC with season. Water temperature and salinity followed seasonal patterns of air temperature and rainfall, while mean DOC concentration was highest during the dry season (May), followed by the wet (October) and ‘Norte’ (December) seasons. This pattern of DOC concentration may be due to a combination of litter production and inundation pattern of the wetland. In contrast to daily (between tides) variation in DOC flux between the mangrove forest and tidal creek, daily variations of mean water quality were not significant. However, within-tide variation of DOC flux, dissolved oxygen content and salinity was observed. This indicated that the length of inundation and water source (freshwater vs. saltwater) variation across tidal cycles influenced water quality and DOC flux in the water column. Net DOC export was measured in October and December, suggesting the mangrove forest was a source of DOC to the adjacent tidal creek during these periods. Net annual export of DOC from the fringe mangrove to both the tidal creek and basin mangrove forest was 56 g C m−2 year−1. The seasonal pattern in our flux results indicates that DOC flux from this mangrove forest may be governed by both freshwater discharge and tidal range.
Resumo:
We present 30 new planktonic foraminiferal census data of surface sediment samples from the South China Sea, recovered between 630 and 2883 m water depth. These new data, together with the 131 earlier published data sets from the western Pacific, are used for calibrating the SIMMAX-28 transfer function to estimate past sea-surface temperatures. This regional SIMMAX method offers a slightly better understanding of the marginal sea conditions of the South China Sea than the linear transfer function FP-12E, which is based only on open-ocean data. However, both methods are biased toward the tropical temperature regime because of the very limited data from temperate to subpolar regions. The SIMMAX formula was applied to sediment core 17940 from the northeastern South China Sea, with sedimentation rates of 20-80 cm/ka. Results revealed nearly unchanged summer temperatures around 28°C for the last 30 ky, while winter temperatures varied between 19.5°C in the last glacial maximum and 26°C during the Holocene. During Termination 1A, the winter estimates show a Younger Dryas cooling by 3°C subsequent to a temperature optimum of 24°C during the Bölling=Alleröd. Estimates of winter temperature differences between 0 and 100 m water depth document the seasonal variations in the thickness of the mixed layer and provide a new proxy for estimating past changes in the strength of the winter monsoon.