984 resultados para SCALAR
Resumo:
The Lorentz-Dirac equation is not an unavoidable consequence of solely linear and angular momenta conservation for a point charge. It also requires an additional assumption concerning the elementary character of the charge. We here use a less restrictive elementarity assumption for a spinless charge and derive a system of conservation equations that are not properly the equation of motion because, as it contains an extra scalar variable, the future evolution of the charge is not determined. We show that a supplementary constitutive relation can be added so that the motion is determined and free from the troubles that are customary in the Lorentz-Dirac equation, i.e., preacceleration and runaways.
Resumo:
In inflationary cosmological models driven by an inflaton field the origin of the primordial inhomogeneities which are responsible for large-scale structure formation are the quantum fluctuations of the inflaton field. These are usually calculated using the standard theory of cosmological perturbations, where both the gravitational and the inflaton fields are linearly perturbed and quantized. The correlation functions for the primordial metric fluctuations and their power spectrum are then computed. Here we introduce an alternative procedure for calculating the metric correlations based on the Einstein-Langevin equation which emerges in the framework of stochastic semiclassical gravity. We show that the correlation functions for the metric perturbations that follow from the Einstein-Langevin formalism coincide with those obtained with the usual quantization procedures when the scalar field perturbations are linearized. This method is explicitly applied to a simple model of chaotic inflation consisting of a Robertson-Walker background, which undergoes a quasi-de Sitter expansion, minimally coupled to a free massive quantum scalar field. The technique based on the Einstein-Langevin equation can, however, deal naturally with the perturbations of the scalar field even beyond the linear approximation, as is actually required in inflationary models which are not driven by an inflaton field, such as Starobinsky¿s trace-anomaly driven inflation or when calculating corrections due to nonlinear quantum effects in the usual inflaton driven models.
Resumo:
A spatially flat Robertson-Walker spacetime driven by a cosmological constant is nonconformally coupled to a massless scalar field. The equations of semiclassical gravity are explicitly solved for this case, and a self-consistent de Sitter solution associated with the Bunch-Davies vacuum state is found (the effect of the quantum field is to shift slightly the effective cosmological constant). Furthermore, it is shown that the corrected de Sitter spacetime is stable under spatially isotropic perturbations of the metric and the quantum state. These results are independent of the free renormalization parameters.
Resumo:
We propose a definition of classical differential cross sections for particles with essentially nonplanar orbits, such as spinning ones. We give also a method for its computation. The calculations are carried out explicitly for electromagnetic, gravitational, and short-range scalar interactions up to the linear terms in the slow-motion approximation. The contribution of the spin-spin terms is found to be at best 10-6 times the post-Newtonian ones for the gravitational interaction.
Resumo:
We consider the coupling of quantum massless and massive scalar particles with exact gravitational plane waves. The cross section for scattering of the quantum particles by the waves is shown to coincide with the classical cross section for scattering of geodesics. The expectation value of the scalar field stress tensor between scattering states diverges at the points where classical test particles focus after colliding with the wave. This indicates that back-reaction effects cannot be ignored for plane waves propagating in the presence of quantum particles and that classical singularities are likely to develop.
Resumo:
We propose a simple geometrical prescription for coupling a test quantum scalar field to an "inflaton" (classical scalar field) in the presence of gravity. When the inflaton stems from the compactification of a Kaluza-Klein theory, the prescription leaves no arbitrariness and amounts to a dimensional reduction of the Klein-Gordon equation. We discuss the possible relevance of this coupling to "reheating" in inflationary cosmologies.
Resumo:
The in-in effective action formalism is used to derive the semiclassical correction to Einsteins equations due to a massless scalar quantum field conformally coupled to small gravitational perturbations in spatially flat cosmological models. The vacuum expectation value of the stress tensor of the quantum field is directly derived from the renormalized in-in effective action. The usual in-out effective action is also discussed and it is used to compute the probability of particle creation. As one application, the stress tensor of a scalar field around a static cosmic string is derived and the back-reaction effect on the gravitational field of the string is discussed.
Resumo:
We use wave packet mode quantization to compute the creation of massless scalar quantum particles in a colliding plane wave spacetime. The background spacetime represents the collision of two gravitational shock waves followed by trailing gravitational radiation which focus into a Killing-Cauchy horizon. The use of wave packet modes simplifies the problem of mode propagation through the different spacetime regions which was previously studied with the use of monochromatic modes. It is found that the number of particles created in a given wave packet mode has a thermal spectrum with a temperature which is inversely proportional to the focusing time of the plane waves and which depends on the mode trajectory.
Resumo:
(2+1)-dimensional anti-de Sitter (AdS) gravity is quantized in the presence of an external scalar field. We find that the coupling between the scalar field and gravity is equivalently described by a perturbed conformal field theory at the boundary of AdS3. This allows us to perform a microscopic computation of the transition rates between black hole states due to absorption and induced emission of the scalar field. Detailed thermodynamic balance then yields Hawking radiation as spontaneous emission, and we find agreement with the semiclassical result, including greybody factors. This result also has application to four and five-dimensional black holes in supergravity.
Resumo:
We recently showed that a heavy quark moving su ciently fast through a quark-gluon plasma may lose energy by Cherenkov-radiating mesons [1]. Here we review our previous holographic calculation of the energy loss in N = 4 Super Yang-Mills and extend it to longitudinal vector mesons and scalar mesons. We also discuss phenomenological implications for heavy-ion collision experiments. Although the Cherenkov energy loss is an O(1=Nc) effect, a ballpark estimate yields a value of dE/dx for Nc = 3 which is comparable to that of other mechanisms.
Resumo:
A canonical formalism obtained for path-dependent Lagrangians is applied to Fokker-type Lagrangians. The results are specialized for coupling constant expansions and later on are applied to relativistic systems of particles interacting through symmetric scalar and vector mesodynamics and electrodynamics.
Resumo:
Multiobjective matrix games have been traditionally analyzed from two different points of view: equiibrium concepts and security strategies. This paper is based upon the idea that both players try to reach equilibrium points playing pairs of security strategies, as it happens in scalar matrix games. We show conditions guaranteeing the existence of equilibria in security strategies, named security equilibria
Resumo:
We present an analytical scheme, easily implemented numerically, to generate synthetic Gaussian turbulent flows by using a linear Langevin equation, where the noise term acts as a stochastic stirring force. The characteristic parameters of the velocity field are well introduced, in particular the kinematic viscosity and the spectrum of energy. As an application, the diffusion of a passive scalar is studied for two different energy spectra. Numerical results are compared favorably with analytical calculations.
Resumo:
We recently showed that a heavy quark moving su ciently fast through a quark-gluon plasma may lose energy by Cherenkov-radiating mesons [1]. Here we review our previous holographic calculation of the energy loss in N = 4 Super Yang-Mills and extend it to longitudinal vector mesons and scalar mesons. We also discuss phenomenological implications for heavy-ion collision experiments. Although the Cherenkov energy loss is an O(1=Nc) effect, a ballpark estimate yields a value of dE/dx for Nc = 3 which is comparable to that of other mechanisms.
Resumo:
This study tested for the measurement equivalence of a four-factor measure of career indecision (Career Indecision Profile-65 [CIP-65]) between a U.S. sample and two international samples; one composed of French-speaking young adults from France and Switzerland and the other of Italian ado- lescents. Previous research had supported the four-factor structure of the CIP-65 in both the United States and Iceland but also showed that items on two of the four scales may be interpreted differently by young adults growing up in these two countries. This study extends previous research by testing whether the four CIP-65 factors are measured equivalently in two additional international samples. Results largely supported the configural and metric invariance of the CIP-65 in the United States and international samples, but several scales showed a lack of scalar invariance. Some explanations are offered for these findings along with suggestions for future research and implications for practice.