708 resultados para SATURABLE ABSORBER


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jitter measurements were performed on a monolithically integrated active/passive cavity multiple quantum well laser, actively mode-locked at 10 GHz via modulation of an absorber section. Sub-10 ps pulses were produced upon optimization of the drive conditions to the gain, distributed Bragg reflector, and absorber sections. A model was also developed using travelling wave rate equations. Simulation results suggest that spontaneous emission is the dominant cause of jitter, with carrier dynamics having a time constant of the order of 1 ns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A semi-active truck damper was developed in conjunction with a commercial shock absorber manufacturer. A linearized damper model was developed for control system design purposes. Open- and closed-loop damper force tracking control was implemented, with tests showing that an open-loop approach gave the best compromise between response speed and accuracy. A hardware-in-the-loop test facility was used to investigate performance of the damper when combined with a simulated quarter-car model. The input to the vehicle model was a set of randomly generated road profiles, each profile traversed at an appropriate speed. Modified skyhook damping tests showed a simultaneous improvement over the optimum passive case of 13 per cent in vertical body acceleration and 8 per cent in dynamic tyre forces. Full-scale vehicle tests of the damper on a heavy tri-axle trailer were carried out. Implementation of modified skyhook damping yielded a simultaneous improvement over the optimum passive case of 8 per cent in vertical body acceleration and 8 per cent in dynamic tyre forces. © IMechE 2008.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We exfoliate graphite in both aqueous and non-aqueous environments through mild sonication followed by centrifugation. The dispersions are enriched with monolayers. We mix them with polymers, followed by slow evaporation to produce optical quality composites. Nonlinear optical measurements show similar to 5% saturable absorption. The composites are then integrated into fiber laser cavities to generate 630 fs pulses at 1.56 mu m. This shows the viability of solution phase processing for graphene based photonic devices. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theoretical model for Dicke superradiance (SR) in diode lasers is proposed using the travelling wave method with a spatially resolved absorber and spectrally resolved gain. The role of electrode configuration and optical bandwidth are compared and contrasted as a route to enhance femtosecond pulse power. While pulse duration can be significantly reduced through careful absorber length specification, stability is degraded. However an increased spectral gain bandwidth of up to 150 nm is predicted to allow pulsewidth reductions of down to 10 fs and over 500-W peak power without further degradation in pulse stability. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A vertically aligned multi-walled carbon nanotube (VACNT) film has been characterized by rectangular waveguide measurements. The complex scattering parameters (S-parameters) are measured by a vector network analyzer at X-band frequencies. The effective complex permittivity and permeability of the VACNT film have been extracted using the Nicolson-Ross-Weir (NWR) approach. The extracted parameters are verified by full wave simulations (CST Microwave Studio) and very good agreement has been obtained. A systematic error analysis is presented and the errors are within the acceptable range. The performance of VACNT films as an absorber is examined, and comparison with the conventional carbon loaded materials shows that a 90% size reduction is possible whilst maintaining the same absorption level. © 2011 EUROPEAN MICROWAVE ASSOC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrafast lasers play an increasingly important role in many applications. Nanotubes and graphene have emerged as promising novel saturable absorbers for passive mode-locking. Here, we review recent progress on the exploitation of these two carbon nanomaterials in ultrafast photonics. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal foams fabricated via sintering offer novel mechanical and acoustic properties. Previously, polymer foams have been used as a means of absorbing acoustic energy. However, the structural applications of these foams are limited. The metal sintering approach offers a cost-effective means for the mass-production of open-cell metal foams. The static flow resistance of sintered metal foams was characterized for a range of practical pore sizes and porosities. The measured values for the flow resistance were subsequently used in a phenomenological acoustic model to predict the impedances and propagation constants of the foams. The predictions were then compared to acoustic measurements. At low frequencies (0-1000Hz), the phenomenological model captures the magnitude and frequency dependence of the absorption. At higher frequencies, as expected, the phenomenological model underpredicted the acoustic properties of the foams. However, an alternative microstructural model demonstrated good correlation to the measured results in this frequency range. The effects of foam type and arrangement on the absorption pattern were examined. General trends were identified for enhancing the low frequency performance of an acoustic absorber incorporating sintered foams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding how and why changes propagate during engineering design is critical because most products and systems emerge from predecessors and not through clean sheet design. This paper applies change propagation analysis methods and extends prior reasoning through examination of a large data set from industry including 41,500 change requests, spanning 8 years during the design of a complex sensor system. Different methods are used to analyze the data and the results are compared to each other and evaluated in the context of previous findings. In particular the networks of connected parent, child and sibling changes are resolved over time and mapped to 46 subsystem areas. A normalized change propagation index (CPI) is then developed, showing the relative strength of each area on the absorber-multiplier spectrum between -1 and +1. Multipliers send out more changes than they receive and are good candidates for more focused change management. Another interesting finding is the quantitative confirmation of the "ripple" change pattern. Unlike the earlier prediction, however, it was found that the peak of cyclical change activity occurred late in the program driven by systems integration and functional testing. Patterns emerged from the data and offer clear implications for technical change management approaches in system design. Copyright © 2007 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We fabricate double-wall carbon nanotube polymer composite saturable absorbers and demonstrate stable Q-switched and Mode-locked Thulium fiber lasers in a linear cavity and a ring cavity respectively. © 2012 OSA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper theoretically investigates the application of tuned vibration absorbers and hybrid passive/active inertial actuators to reduce the vibrational responses of plates and shells. The passive/active actuators are initially applied to a simple plate. A model of a submerged hull consisting of a ring stiffened finite cylinder with bulkheads and external fluid loading is then considered. The fluctuating forces from the propeller result in excitation of the low frequency global hull modes. Inertial actuators and tuned vibration absorbers are located at each end of the hull and in circumferential arrays to reduce the hull structural response at its axial resonances. The control performance of the hybrid passive/active inertial actuator, where the passive component is tuned to a structural resonance, is compared to the attenuation achieved by a fully passive tuned vibration absorber. This work shows the potential of using hybrid passive/active inertial actuators to attenuate the global structural responses of a submerged vessel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is growing interest in the use of 242mAm as a nuclear fuel. Because of its very high thermal fission cross section and its large number of neutrons released per fission, it can be used for various unique applications, such as space propulsion, medical applications, and compact energy sources. Since the thermal absorption cross section of 242mAm is very high, the best way to obtain 242mAm is by the capture of fast or epithermal neutrons in 241Am. However, fast spectrum reactors are not readily available. In this paper, we explore the possibility of producing 242mAm in existing pressurized water reactors (PWRs) with minimal interference in reactor performance. As suggested in previous studies on the subject, the 242mAm breeding targets are shielded with strong thermal absorbers in order to suppress the thermal neutron flux that causes 242mAm destruction. Since 242mAm enrichment within the Am target mainly depends on the neutron energy distribution, which in turn depends on the Am target thickness and on the neutron filter cutoff energy (thermal absorber type), this unique Am target design was developed. In our study, Cd, Sm, and Gd were considered as thermal neutron filters, as suggested by Cesana et al. The most favorable results were obtained by irradiating Am targets covered either with Gd or Cd. In these cases, up to 8.65% enrichment of 242mAm is obtained after 4.5 yr (three successive PWR fuel cycles) of irradiation. It was also found that significant quantities [up to 1.3 kg/GW (electric)-yr] of 242mAm can be obtained in PWR reactors without notable interference with reactor performance. However, in order to maintain the original fuel cycle length, the enrichment of the driver (UO2) fuel must be increased by ∼1%, raised from the conventional 4.5 to 5.5%, depending on the thermal neutron filter used. The most important reactivity feedback coefficients for fuel assemblies containing the 242mAm breeding targets were evaluated and found to be close to those of a standard PWR. Another product of neutron capture in the 241Am reaction is 238Pu. It was found that in a typical 1000 MW (electric) PWR core with one-third of the fuel assemblies containing 241Am targets, up to 15.1 kg of 238Pu enriched to 80% can be produced per year.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper discusses the use of 241Am as proliferation resistant burnable poison for light water reactors. Homogeneous addition of small (as little as 0.12%) amounts of 241Am to the conventional light water reactor fuel results in significant increase in 238Pu/Pu ratio in the discharged fuel improving its proliferation resistance. Moreover, 241Am, admixed to the fuel, acts as burnable absorber allowing for substantial reduction in conventional reactivity control means without a notable fuel cycle length penalty. This is possible due to favorable characteristics of 241Am transmutation chain. The fuel cycle length penalty of introducing 241Am into the core is evaluated and discussed, as well as the impact of He production in the fuel pins and degradation of reactivity feedback coefficients. Proliferation resistance and reactivity control features related to the use of 241Am are compared to those of using 237Np, which has also been suggested as an additive to the conventional fuel in order to improve its proliferation resistance. It was found that 241Am admixture is more favorable than 237Np admixture because of the smaller fuel cycle length penalty and higher burnable poison savings. Addition of either 237Np or 241Am would provide substantial but not ultimate protection from misuse of Pu originating in the spent fuel from the commercial power reactors. Therefore, the benefits from application of the concept would have to be carefully evaluated against the additional costs and proliferation risks associated with manufacturing of 237Np or 241Am doped fuel. Although this work concerns specifically with PWRs, the conclusions could also be applied to BWRs and, to some extent, to other thermal spectrum reactor types. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper discusses the use of 141Am as proliferation resistant burnable poison for light water reactors. Homogeneous addition of small (less than 1 %) amounts of 241Am to the conventional LWR fuel results in significant increase in 238Pu/Pu ratio in the discharged fuel improving its proliferation resistance. Moreover, 241Am, admixed to the fuel, acts as burnable absorber allowing for substantial reduction in conventional reactivity control means without notable fuel cycle length penalty. This is possible due to favourable characteristics of 241Am transmutation chain. The fuel cycle length penalty of introducing 241Am into the core is evaluated and discussed, as well as the impact of He production in the fuel pins and degradation of reactivity feedback coefficients. Proliferation resistance and reactivity control features related to the use of 241Am are compared to those of using 237Np, which has also been suggested as an additive to the conventional fuel in order to improve its proliferation resistance. It was found that 241Am admixture is more favourable than 237Np admixture because of the smaller fuel cycle length penalty and higher burnable poison savings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design challenges of the fertile-free based fuel (FFF) can be addressed by careful and elaborate use of burnable poisons (BP). Practical fully FFF core design for PWR reactor has been reported in the past [1]. However, the burnable poison option used in the design resulted in significant end of cycle reactivity penalty due to incomplete BP depletion. Consequently, excessive Pu loading were required to maintain the target fuel cycle length, which in turn decreased the Pu burning efficiency. A systematic evaluation of commercially available BP materials in all configurations currently used in PWRs is the main objective of this work. The BP materials considered are Boron, Gd, Er, and Hf. The BP geometries were based on Wet Annular Burnable Absorber (WABA), Integral Fuel Burnable Absorber (IFBA), and Homogeneous poison/fuel mixtures. Several most promising combinations of BP designs were selected for the full core 3D simulation. All major core performance parameters for the analyzed cases are very close to those of a standard PWR with conventional UO2 fuel including possibility of reactivity control, power peaking factors, and cycle length. The MTC of all FFF cores was found at the full power conditions at all times and very close to that of the UO2 core. The Doppler coefficient of the FFF cores is also negative but somewhat lower in magnitude compared to UO2 core. The soluble boron worth of the FFF cores was calculated to be lower than that of the UO2 core by about a factor of two, which still allows the core reactivity control with acceptable soluble boron concentrations. The main conclusion of this work is that judicial application of burnable poisons for fertile free fuel has a potential to produce a core design with performance characteristics close to those of the reference PWR core with conventional UO2 fuel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the first hybrid mode-locking of a monolithic two-section multiple quantum well InGaN based laser diode. This device, with a length of 1.5 mm, has a 50-μm-long absorber section located at the back facet and generates a continuous stable 28.6 GHz pulse train with an average output power of 9.4 mW at an emission wavelength of 422 nm. Under hybrid mode-locking, the pulse width reduces to 4 ps, the peak power increases to 72 mW, and the microwave linewidth reduces by 13 dB to <500 kHz. We also observe the passive mode-locking with pulse width and peak power of 8 ps and 37 mW, respectively. © 1989-2012 IEEE.