791 resultados para Rule-Based Classification
Resumo:
Objective: We used demographic and clinical data to design practical classification models for prediction of neurocognitive impairment (NCI) in people with HIV infection. Methods: The study population comprised 331 HIV-infected patients with available demographic, clinical, and neurocognitive data collected using a comprehensive battery of neuropsychological tests. Classification and regression trees (CART) were developed to btain detailed and reliable models to predict NCI. Following a practical clinical approach, NCI was considered the main variable for study outcomes, and analyses were performed separately in treatment-naïve and treatment-experienced patients. Results: The study sample comprised 52 treatment-naïve and 279 experienced patients. In the first group, the variables identified as better predictors of NCI were CD4 cell count and age (correct classification [CC]: 79.6%, 3 final nodes). In treatment-experienced patients, the variables most closely related to NCI were years of education, nadir CD4 cell count, central nervous system penetration-effectiveness score, age, employment status, and confounding comorbidities (CC: 82.1%, 7 final nodes). In patients with an undetectable viral load and no comorbidities, we obtained a fairly accurate model in which the main variables were nadir CD4 cell count, current CD4 cell count, time on current treatment, and past highest viral load (CC: 88%, 6 final nodes). Conclusion: Practical classification models to predict NCI in HIV infection can be obtained using demographic and clinical variables. An approach based on CART analyses may facilitate screening for HIV-associated neurocognitive disorders and complement clinical information about risk and protective factors for NCI in HIV-infected patients.
Resumo:
Objective Quantitative analysis of chest radiographs of patients with and without chronic obstructive pulmonary disease (COPD) determining if the data obtained from such radiographic images could classify such individuals according to the presence or absence of disease. Materials and Methods For such a purpose, three groups of chest radiographic images were utilized, namely: group 1, including 25 individuals with COPD; group 2, including 27 individuals without COPD; and group 3 (utilized for the reclassification /validation of the analysis), including 15 individuals with COPD. The COPD classification was based on spirometry. The variables normalized by retrosternal height were the following: pulmonary width (LARGP); levels of right (ALBDIR) and left (ALBESQ) diaphragmatic eventration; costophrenic angle (ANGCF); and right (DISDIR) and left (DISESQ) intercostal distances. Results As the radiographic images of patients with and without COPD were compared, statistically significant differences were observed between the two groups on the variables related to the diaphragm. In the COPD reclassification the following variables presented the highest indices of correct classification: ANGCF (80%), ALBDIR (73.3%), ALBESQ (86.7%). Conclusion The radiographic assessment of the chest demonstrated that the variables related to the diaphragm allow a better differentiation between individuals with and without COPD.
Resumo:
Identification of clouds from satellite images is now a routine task. Observation of clouds from the ground, however, is still needed to acquire a complete description of cloud conditions. Among the standard meteorologicalvariables, solar radiation is the most affected by cloud cover. In this note, a method for using global and diffuse solar radiation data to classify sky conditions into several classes is suggested. A classical maximum-likelihood method is applied for clustering data. The method is applied to a series of four years of solar radiation data and human cloud observations at a site in Catalonia, Spain. With these data, the accuracy of the solar radiation method as compared with human observations is 45% when nine classes of sky conditions are to be distinguished, and it grows significantly to almost 60% when samples are classified in only five different classes. Most errors are explained by limitations in the database; therefore, further work is under way with a more suitable database
Resumo:
Twelve single-pustule isolates of Uromyces appendiculatus, the etiological agent of common bean rust, were collected in the state of Minas Gerais, Brazil, and classified according to the new international differential series and the binary nomenclature system proposed during the 3rd Bean Rust Workshop. These isolates have been used to select rust-resistant genotypes in a bean breeding program conducted by our group. The twelve isolates were classified into seven different physiological races: 21-3, 29-3, 53-3, 53-19, 61-3, 63-3 and 63-19. Races 61-3 and 63-3 were the most frequent in the area. They were represented by five and two isolates, respectively. The other races were represented by just one isolate. This is the first time the new international classification procedure has been used for U. appendiculatus physiological races in Brazil. The general adoption of this system will facilitate information exchange, allowing the cooperative use of the results obtained by different research groups throughout the world. The differential cultivars Mexico 309, Mexico 235 and PI 181996 showed resistance to all of the isolates that were characterized. It is suggested that these cultivars should be preferentially used as sources for resistance to rust in breeding programs targeting development lines adapted to the state of Minas Gerais.
Resumo:
In order to determine the variability of pequi tree (Caryocar brasiliense Camb.) populations, volatile compounds from fruits of eighteen trees representing five populations were extracted by headspace solid-phase microextraction and analyzed by gas chromatography-mass spectrometry. Seventy-seven compounds were identified, including esters, hydrocarbons, terpenoids, ketones, lactones, and alcohols. Several compounds had not been previously reported in the pequi fruit. The amount of total volatile compounds and the individual compound contents varied between plants. The volatile profile enabled the differentiation of all of the eighteen plants, indicating that there is a characteristic profile in terms of their origin. The use of Principal Component Analysis and Cluster Analysis enabled the establishment of markers (dendrolasin, ethyl octanoate, ethyl 2-octenoate and β-cis-ocimene) that discriminated among the pequi trees. According to the Cluster Analysis, the plants were classified into three main clusters, and four other plants showed a tendency to isolation. The results from multivariate analysis did not always group plants from the same population together, indicating that there is greater variability within the populations than between pequi tree populations.
Resumo:
Dans l'apprentissage machine, la classification est le processus d’assigner une nouvelle observation à une certaine catégorie. Les classifieurs qui mettent en œuvre des algorithmes de classification ont été largement étudié au cours des dernières décennies. Les classifieurs traditionnels sont basés sur des algorithmes tels que le SVM et les réseaux de neurones, et sont généralement exécutés par des logiciels sur CPUs qui fait que le système souffre d’un manque de performance et d’une forte consommation d'énergie. Bien que les GPUs puissent être utilisés pour accélérer le calcul de certains classifieurs, leur grande consommation de puissance empêche la technologie d'être mise en œuvre sur des appareils portables tels que les systèmes embarqués. Pour rendre le système de classification plus léger, les classifieurs devraient être capable de fonctionner sur un système matériel plus compact au lieu d'un groupe de CPUs ou GPUs, et les classifieurs eux-mêmes devraient être optimisés pour ce matériel. Dans ce mémoire, nous explorons la mise en œuvre d'un classifieur novateur sur une plate-forme matérielle à base de FPGA. Le classifieur, conçu par Alain Tapp (Université de Montréal), est basé sur une grande quantité de tables de recherche qui forment des circuits arborescents qui effectuent les tâches de classification. Le FPGA semble être un élément fait sur mesure pour mettre en œuvre ce classifieur avec ses riches ressources de tables de recherche et l'architecture à parallélisme élevé. Notre travail montre que les FPGAs peuvent implémenter plusieurs classifieurs et faire les classification sur des images haute définition à une vitesse très élevée.
Resumo:
After skin cancer, breast cancer accounts for the second greatest number of cancer diagnoses in women. Currently the etiologies of breast cancer are unknown, and there is no generally accepted therapy for preventing it. Therefore, the best way to improve the prognosis for breast cancer is early detection and treatment. Computer aided detection systems (CAD) for detecting masses or micro-calcifications in mammograms have already been used and proven to be a potentially powerful tool , so the radiologists are attracted by the effectiveness of clinical application of CAD systems. Fractal geometry is well suited for describing the complex physiological structures that defy the traditional Euclidean geometry, which is based on smooth shapes. The major contribution of this research include the development of • A new fractal feature to accurately classify mammograms into normal and normal (i)With masses (benign or malignant) (ii) with microcalcifications (benign or malignant) • A novel fast fractal modeling method to identify the presence of microcalcifications by fractal modeling of mammograms and then subtracting the modeled image from the original mammogram. The performances of these methods were evaluated using different standard statistical analysis methods. The results obtained indicate that the developed methods are highly beneficial for assisting radiologists in making diagnostic decisions. The mammograms for the study were obtained from the two online databases namely, MIAS (Mammographic Image Analysis Society) and DDSM (Digital Database for Screening Mammography.
Resumo:
Image processing has been a challenging and multidisciplinary research area since decades with continuing improvements in its various branches especially Medical Imaging. The healthcare industry was very much benefited with the advances in Image Processing techniques for the efficient management of large volumes of clinical data. The popularity and growth of Image Processing field attracts researchers from many disciplines including Computer Science and Medical Science due to its applicability to the real world. In the meantime, Computer Science is becoming an important driving force for the further development of Medical Sciences. The objective of this study is to make use of the basic concepts in Medical Image Processing and develop methods and tools for clinicians’ assistance. This work is motivated from clinical applications of digital mammograms and placental sonograms, and uses real medical images for proposing a method intended to assist radiologists in the diagnostic process. The study consists of two domains of Pattern recognition, Classification and Content Based Retrieval. Mammogram images of breast cancer patients and placental images are used for this study. Cancer is a disaster to human race. The accuracy in characterizing images using simplified user friendly Computer Aided Diagnosis techniques helps radiologists in detecting cancers at an early stage. Breast cancer which accounts for the major cause of cancer death in women can be fully cured if detected at an early stage. Studies relating to placental characteristics and abnormalities are important in foetal monitoring. The diagnostic variability in sonographic examination of placenta can be overlooked by detailed placental texture analysis by focusing on placental grading. The work aims on early breast cancer detection and placental maturity analysis. This dissertation is a stepping stone in combing various application domains of healthcare and technology.
Resumo:
In this paper, we propose a multispectral analysis system using wavelet based Principal Component Analysis (PCA), to improve the brain tissue classification from MRI images. Global transforms like PCA often neglects significant small abnormality details, while dealing with a massive amount of multispectral data. In order to resolve this issue, input dataset is expanded by detail coefficients from multisignal wavelet analysis. Then, PCA is applied on the new dataset to perform feature analysis. Finally, an unsupervised classification with Fuzzy C-Means clustering algorithm is used to measure the improvement in reproducibility and accuracy of the results. A detailed comparative analysis of classified tissues with those from conventional PCA is also carried out. Proposed method yielded good improvement in classification of small abnormalities with high sensitivity/accuracy values, 98.9/98.3, for clinical analysis. Experimental results from synthetic and clinical data recommend the new method as a promising approach in brain tissue analysis.
Resumo:
Multispectral analysis is a promising approach in tissue classification and abnormality detection from Magnetic Resonance (MR) images. But instability in accuracy and reproducibility of the classification results from conventional techniques keeps it far from clinical applications. Recent studies proposed Independent Component Analysis (ICA) as an effective method for source signals separation from multispectral MR data. However, it often fails to extract the local features like small abnormalities, especially from dependent real data. A multisignal wavelet analysis prior to ICA is proposed in this work to resolve these issues. Best de-correlated detail coefficients are combined with input images to give better classification results. Performance improvement of the proposed method over conventional ICA is effectively demonstrated by segmentation and classification using k-means clustering. Experimental results from synthetic and real data strongly confirm the positive effect of the new method with an improved Tanimoto index/Sensitivity values, 0.884/93.605, for reproduced small white matter lesions
Resumo:
Cancer treatment is most effective when it is detected early and the progress in treatment will be closely related to the ability to reduce the proportion of misses in the cancer detection task. The effectiveness of algorithms for detecting cancers can be greatly increased if these algorithms work synergistically with those for characterizing normal mammograms. This research work combines computerized image analysis techniques and neural networks to separate out some fraction of the normal mammograms with extremely high reliability, based on normal tissue identification and removal. The presence of clustered microcalcifications is one of the most important and sometimes the only sign of cancer on a mammogram. 60% to 70% of non-palpable breast carcinoma demonstrates microcalcifications on mammograms [44], [45], [46].WT based techniques are applied on the remaining mammograms, those are obviously abnormal, to detect possible microcalcifications. The goal of this work is to improve the detection performance and throughput of screening-mammography, thus providing a ‘second opinion ‘ to the radiologists. The state-of- the- art DWT computation algorithms are not suitable for practical applications with memory and delay constraints, as it is not a block transfonn. Hence in this work, the development of a Block DWT (BDWT) computational structure having low processing memory requirement has also been taken up.
Resumo:
A statistical method for classification of sags their origin downstream or upstream from the recording point is proposed in this work. The goal is to obtain a statistical model using the sag waveforms useful to characterise one type of sags and to discriminate them from the other type. This model is built on the basis of multi-way principal component analysis an later used to project the available registers in a new space with lower dimension. Thus, a case base of diagnosed sags is built in the projection space. Finally classification is done by comparing new sags against the existing in the case base. Similarity is defined in the projection space using a combination of distances to recover the nearest neighbours to the new sag. Finally the method assigns the origin of the new sag according to the origin of their neighbours
Resumo:
This paper reports the current state of work to simplify our previous model-based methods for visual tracking of vehicles for use in a real-time system intended to provide continuous monitoring and classification of traffic from a fixed camera on a busy multi-lane motorway. The main constraints of the system design were: (i) all low level processing to be carried out by low-cost auxiliary hardware, (ii) all 3-D reasoning to be carried out automatically off-line, at set-up time. The system developed uses three main stages: (i) pose and model hypothesis using 1-D templates, (ii) hypothesis tracking, and (iii) hypothesis verification, using 2-D templates. Stages (i) & (iii) have radically different computing performance and computational costs, and need to be carefully balanced for efficiency. Together, they provide an effective way to locate, track and classify vehicles.