954 resultados para Robotic navigation systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper assesses the departure and approach operations of unmanned aircraft systems in one of the most challenging scenarios: flying under visual flight rules. Inspired by some existing procedures for (manned) general aviation, some automatic and predefined procedures for unmanned aircraft systems are proposed. Hence, standardized paths to specific waypoints close to the airport are defined for departure operations, just before starting the navigation phase. Conversely, and for the approach maneuvers, a first integration into a holding pattern near the landing runway (ideally, above it) is foreseen, followed by a standard visual-flight-rule airfield traffic pattern. This paper discuses the advantages of these operations, which aim to minimize possible conflicts with other existing aircraft while reducing the pilot-in-command workload. Finally, some preliminary simulations are shown in which these procedures have been successfully tested with simulated surrounding traffic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]Active Vision Systems can be considered as dynamical systems which close the loop around artificial visual perception, controlling camera parameters, motion and also controlling processing to simplify, accelerate and do more robust visual perception. Research and Development in Active Vision Systems [Aloi87], [Bajc88] is a main area of interest in Computer Vision, mainly by its potential application in different scenarios where real-time performance is needed such as robot navigation, surveillance, visual inspection, among many others. Several systems have been developed during last years using robotic-heads for this purpose...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Il existe désormais une grande variété de lentilles panoramiques disponibles sur le marché dont certaines présentant des caractéristiques étonnantes. Faisant partie de cette dernière catégorie, les lentilles Panomorphes sont des lentilles panoramiques anamorphiques dont le profil de distorsion est fortement non-uniforme, ce qui cause la présence de zones de grandissement augmenté dans le champ de vue. Dans un contexte de robotique mobile, ces particularités peuvent être exploitées dans des systèmes stéréoscopiques pour la reconstruction 3D d’objets d’intérêt qui permettent à la fois une bonne connaissance de l’environnement, mais également l’accès à des détails plus fins en raison des zones de grandissement augmenté. Cependant, à cause de leur complexité, ces lentilles sont difficiles à calibrer et, à notre connaissance, aucune étude n’a réellement été menée à ce propos. L’objectif principal de cette thèse est la conception, l’élaboration et l’évaluation des performances de systèmes stéréoscopiques Panomorphes. Le calibrage a été effectué à l’aide d’une technique établie utilisant des cibles planes et d’une boîte à outils de calibrage dont l’usage est répandu. De plus, des techniques mathématiques nouvelles visant à rétablir la symétrie de révolution dans l’image (cercle) et à uniformiser la longueur focale (cercle uniforme) ont été développées pour voir s’il était possible d’ainsi faciliter le calibrage. Dans un premier temps, le champ de vue a été divisé en zones à l’intérieur desquelles la longueur focale instantanée varie peu et le calibrage a été effectué pour chacune d’entre elles. Puis, le calibrage général des systèmes a aussi été réalisé pour tout le champ de vue simultanément. Les résultats ont montré que la technique de calibrage par zone ne produit pas de gain significatif quant à la qualité des reconstructions 3D d’objet d’intérêt par rapport au calibrage général. Cependant, l’étude de cette nouvelle approche a permis de réaliser une évaluation des performances des systèmes stéréoscopiques Panomorphes sur tout le champ de vue et de montrer qu’il est possible d’effectuer des reconstructions 3D de qualité dans toutes les zones. De plus, la technique mathématique du cercle a produit des résultats de reconstructions 3D en général équivalents à l’utilisation des coordonnées originales. Puisqu’il existe des outils de calibrage qui, contrairement à celui utilisé dans ce travail, ne disposent que d’un seul degré de liberté sur la longueur focale, cette technique pourrait rendre possible le calibrage de lentilles Panomorphes à l’aide de ceux-ci. Finalement, certaines conclusions ont pu être dégagées quant aux facteurs déterminants influençant la qualité de la reconstruction 3D à l’aide de systèmes stéréoscopiques Panomorphes et aux caractéristiques à privilégier dans le choix des lentilles. La difficulté à calibrer les optiques Panomorphes en laboratoire a mené à l’élaboration d’une technique de calibrage virtuel utilisant un logiciel de conception optique et une boîte à outils de calibrage. Cette approche a permis d’effectuer des simulations en lien avec l’impact des conditions d’opération sur les paramètres de calibrage et avec l’effet des conditions de calibrage sur la qualité de la reconstruction. Des expérimentations de ce type sont pratiquement impossibles à réaliser en laboratoire mais représentent un intérêt certain pour les utilisateurs. Le calibrage virtuel d’une lentille traditionnelle a aussi montré que l’erreur de reprojection moyenne, couramment utilisée comme façon d’évaluer la qualité d’un calibrage, n’est pas nécessairement un indicateur fiable de la qualité de la reconstruction 3D. Il est alors nécessaire de disposer de données supplémentaires pour juger adéquatement de la qualité d’un calibrage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract : Images acquired from unmanned aerial vehicles (UAVs) can provide data with unprecedented spatial and temporal resolution for three-dimensional (3D) modeling. Solutions developed for this purpose are mainly operating based on photogrammetry concepts, namely UAV-Photogrammetry Systems (UAV-PS). Such systems are used in applications where both geospatial and visual information of the environment is required. These applications include, but are not limited to, natural resource management such as precision agriculture, military and police-related services such as traffic-law enforcement, precision engineering such as infrastructure inspection, and health services such as epidemic emergency management. UAV-photogrammetry systems can be differentiated based on their spatial characteristics in terms of accuracy and resolution. That is some applications, such as precision engineering, require high-resolution and high-accuracy information of the environment (e.g. 3D modeling with less than one centimeter accuracy and resolution). In other applications, lower levels of accuracy might be sufficient, (e.g. wildlife management needing few decimeters of resolution). However, even in those applications, the specific characteristics of UAV-PSs should be well considered in the steps of both system development and application in order to yield satisfying results. In this regard, this thesis presents a comprehensive review of the applications of unmanned aerial imagery, where the objective was to determine the challenges that remote-sensing applications of UAV systems currently face. This review also allowed recognizing the specific characteristics and requirements of UAV-PSs, which are mostly ignored or not thoroughly assessed in recent studies. Accordingly, the focus of the first part of this thesis is on exploring the methodological and experimental aspects of implementing a UAV-PS. The developed system was extensively evaluated for precise modeling of an open-pit gravel mine and performing volumetric-change measurements. This application was selected for two main reasons. Firstly, this case study provided a challenging environment for 3D modeling, in terms of scale changes, terrain relief variations as well as structure and texture diversities. Secondly, open-pit-mine monitoring demands high levels of accuracy, which justifies our efforts to improve the developed UAV-PS to its maximum capacities. The hardware of the system consisted of an electric-powered helicopter, a high-resolution digital camera, and an inertial navigation system. The software of the system included the in-house programs specifically designed for camera calibration, platform calibration, system integration, onboard data acquisition, flight planning and ground control point (GCP) detection. The detailed features of the system are discussed in the thesis, and solutions are proposed in order to enhance the system and its photogrammetric outputs. The accuracy of the results was evaluated under various mapping conditions, including direct georeferencing and indirect georeferencing with different numbers, distributions and types of ground control points. Additionally, the effects of imaging configuration and network stability on modeling accuracy were assessed. The second part of this thesis concentrates on improving the techniques of sparse and dense reconstruction. The proposed solutions are alternatives to traditional aerial photogrammetry techniques, properly adapted to specific characteristics of unmanned, low-altitude imagery. Firstly, a method was developed for robust sparse matching and epipolar-geometry estimation. The main achievement of this method was its capacity to handle a very high percentage of outliers (errors among corresponding points) with remarkable computational efficiency (compared to the state-of-the-art techniques). Secondly, a block bundle adjustment (BBA) strategy was proposed based on the integration of intrinsic camera calibration parameters as pseudo-observations to Gauss-Helmert model. The principal advantage of this strategy was controlling the adverse effect of unstable imaging networks and noisy image observations on the accuracy of self-calibration. The sparse implementation of this strategy was also performed, which allowed its application to data sets containing a lot of tie points. Finally, the concepts of intrinsic curves were revisited for dense stereo matching. The proposed technique could achieve a high level of accuracy and efficiency by searching only through a small fraction of the whole disparity search space as well as internally handling occlusions and matching ambiguities. These photogrammetric solutions were extensively tested using synthetic data, close-range images and the images acquired from the gravel-pit mine. Achieving absolute 3D mapping accuracy of 11±7 mm illustrated the success of this system for high-precision modeling of the environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of teams of Autonomous Underwater Vehicles for visual inspection tasks is a promising robotic field. The images captured by different robots can be also to aid in the localization/navigation of the fleet. In a previous work, a distributed localization system was presented based on the use of Augmented States Kalman Filter through the visual maps obtained by the fleet. In this context, this paper details a system for on-line construction of visual maps and its use to aid the localization and navigation of the robots. Different aspects related to the capture, treatment and construction of mosaics by fleets of robots are presented. The developed system can be executed on-line on different robotic platforms. The paper is concluded with a series of tests and analyses aiming at to system validation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A primary goal of context-aware systems is delivering the right information at the right place and right time to users in order to enable them to make effective decisions and improve their quality of life. There are three key requirements for achieving this goal: determining what information is relevant, personalizing it based on the users’ context (location, preferences, behavioral history etc.), and delivering it to them in a timely manner without an explicit request from them. These requirements create a paradigm that we term as “Proactive Context-aware Computing”. Most of the existing context-aware systems fulfill only a subset of these requirements. Many of these systems focus only on personalization of the requested information based on users’ current context. Moreover, they are often designed for specific domains. In addition, most of the existing systems are reactive - the users request for some information and the system delivers it to them. These systems are not proactive i.e. they cannot anticipate users’ intent and behavior and act proactively without an explicit request from them. In order to overcome these limitations, we need to conduct a deeper analysis and enhance our understanding of context-aware systems that are generic, universal, proactive and applicable to a wide variety of domains. To support this dissertation, we explore several directions. Clearly the most significant sources of information about users today are smartphones. A large amount of users’ context can be acquired through them and they can be used as an effective means to deliver information to users. In addition, social media such as Facebook, Flickr and Foursquare provide a rich and powerful platform to mine users’ interests, preferences and behavioral history. We employ the ubiquity of smartphones and the wealth of information available from social media to address the challenge of building proactive context-aware systems. We have implemented and evaluated a few approaches, including some as part of the Rover framework, to achieve the paradigm of Proactive Context-aware Computing. Rover is a context-aware research platform which has been evolving for the last 6 years. Since location is one of the most important context for users, we have developed ‘Locus’, an indoor localization, tracking and navigation system for multi-story buildings. Other important dimensions of users’ context include the activities that they are engaged in. To this end, we have developed ‘SenseMe’, a system that leverages the smartphone and its multiple sensors in order to perform multidimensional context and activity recognition for users. As part of the ‘SenseMe’ project, we also conducted an exploratory study of privacy, trust, risks and other concerns of users with smart phone based personal sensing systems and applications. To determine what information would be relevant to users’ situations, we have developed ‘TellMe’ - a system that employs a new, flexible and scalable approach based on Natural Language Processing techniques to perform bootstrapped discovery and ranking of relevant information in context-aware systems. In order to personalize the relevant information, we have also developed an algorithm and system for mining a broad range of users’ preferences from their social network profiles and activities. For recommending new information to the users based on their past behavior and context history (such as visited locations, activities and time), we have developed a recommender system and approach for performing multi-dimensional collaborative recommendations using tensor factorization. For timely delivery of personalized and relevant information, it is essential to anticipate and predict users’ behavior. To this end, we have developed a unified infrastructure, within the Rover framework, and implemented several novel approaches and algorithms that employ various contextual features and state of the art machine learning techniques for building diverse behavioral models of users. Examples of generated models include classifying users’ semantic places and mobility states, predicting their availability for accepting calls on smartphones and inferring their device charging behavior. Finally, to enable proactivity in context-aware systems, we have also developed a planning framework based on HTN planning. Together, these works provide a major push in the direction of proactive context-aware computing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dendritic cell algorithm is an immune-inspired technique for processing time-dependant data. Here we propose it as a possible solution for a robotic classification problem. The dendritic cell algorithm is implemented on a real robot and an investigation is performed into the effects of varying the migration threshold median for the cell population. The algorithm performs well on a classification task with very little tuning. Ways of extending the implementation to allow it to be used as a classifier within the field of robotic security are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dendritic cell algorithm is an immune-inspired technique for processing time-dependant data. Here we propose it as a possible solution for a robotic classification problem. The dendritic cell algorithm is implemented on a real robot and an investigation is performed into the effects of varying the migration threshold median for the cell population. The algorithm performs well on a classification task with very little tuning. Ways of extending the implementation to allow it to be used as a classifier within the field of robotic security are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dendritic cell algorithm is an immune-inspired technique for processing time-dependant data. Here we propose it as a possible solution for a robotic classification problem. The dendritic cell algorithm is implemented on a real robot and an investigation is performed into the effects of varying the migration threshold median for the cell population. The algorithm performs well on a classification task with very little tuning. Ways of extending the implementation to allow it to be used as a classifier within the field of robotic security are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Robot-control designers have begun to exploit the properties of the human immune system in order to produce dynamic systems that can adapt to complex, varying, real-world tasks. Jerne’s idiotypic-network theory has proved the most popular artificial-immune-system (AIS) method for incorporation into behaviour-based robotics, since idiotypic selection produces highly adaptive responses. However, previous efforts have mostly focused on evolving the network connections and have often worked with a single, preengineered set of behaviours, limiting variability. This paper describes a method for encoding behaviours as a variable set of attributes, and shows that when the encoding is used with a genetic algorithm (GA), multiple sets of diverse behaviours can develop naturally and rapidly, providing much greater scope for flexible behaviour-selection. The algorithm is tested extensively with a simulated e-puck robot that navigates around a maze by tracking colour. Results show that highly successful behaviour sets can be generated within about 25 minutes, and that much greater diversity can be obtained when multiple autonomous populations are used, rather than a single one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The suitable operation of mobile robots when providing Ambient Assisted Living (AAL) services calls for robust object recognition capabilities. Probabilistic Graphical Models (PGMs) have become the de-facto choice in recognition systems aiming to e ciently exploit contextual relations among objects, also dealing with the uncertainty inherent to the robot workspace. However, these models can perform in an inco herent way when operating in a long-term fashion out of the laboratory, e.g. while recognizing objects in peculiar con gurations or belonging to new types. In this work we propose a recognition system that resorts to PGMs and common-sense knowledge, represented in the form of an ontology, to detect those inconsistencies and learn from them. The utilization of the ontology carries additional advantages, e.g. the possibility to verbalize the robot's knowledge. A primary demonstration of the system capabilities has been carried out with very promising results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a real-time optimal control technique for non-linear plants is proposed. The control system makes use of the cell-mapping (CM) techniques, widely used for the global analysis of highly non-linear systems. The CM framework is employed for designing approximate optimal controllers via a control variable discretization. Furthermore, CM-based designs can be improved by the use of supervised feedforward artificial neural networks (ANNs), which have proved to be universal and efficient tools for function approximation, providing also very fast responses. The quantitative nature of the approximate CM solutions fits very well with ANNs characteristics. Here, we propose several control architectures which combine, in a different manner, supervised neural networks and CM control algorithms. On the one hand, different CM control laws computed for various target objectives can be employed for training a neural network, explicitly including the target information in the input vectors. This way, tracking problems, in addition to regulation ones, can be addressed in a fast and unified manner, obtaining smooth, averaged and global feedback control laws. On the other hand, adjoining CM and ANNs are also combined into a hybrid architecture to address problems where accuracy and real-time response are critical. Finally, some optimal control problems are solved with the proposed CM, neural and hybrid techniques, illustrating their good performance.