928 resultados para Rheumatoid Arthritis (RA)
Resumo:
During pregnancy, the fetus represents a natural allograft that is not normally rejected. While the maternal immune system retains the ability to respond to foreign antigens, tolerance mechanisms are up-regulated to protect the fetus from immunologic attacks by the mother. The profound immunologic adaptations during and after pregnancy do influence maternal autoimmune rheumatic diseases in several ways. One is triggering the onset of a rheumatic disease in the post partum period, the other influencing disease activity of established rheumatic disease. The review will discuss the mechanisms of increased susceptibility of rheumatoid arthritis (RA) in the first year post partum with a specific emphasis on the role of fetal cells or antigens persisting in the maternal circulation (so called microchimerism). Furthermore, the different influences of pregnancy on established rheumatic diseases will be highlighted. A marked beneficial effect of pregnancy is observed on RA whereas several other rheumatic diseases as ankylosing spondylitis (AS) and systemic lupus erythematosus (SLE) show either no particular effect or an aggravation of symptoms during pregnancy. Differences emerging in regard to modulation of disease symptoms during pregnancy seem related to response to hormones, the type of cytokine profile and immune response prevailing as well as further downstream interactions of molecular pathways that are important in disease pathogenesis.
Resumo:
Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these risk variants. It has previously been observed that different genes harboring causal mutations for the same Mendelian disease often physically interact. We sought to evaluate the degree to which this is true of genes within strongly associated loci in complex disease. Using sets of loci defined in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein-protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more densely connected than chance expectation. To confirm biological relevance, we show that the components of the networks tend to be expressed in similar tissues relevant to the phenotypes in question, suggesting the network indicates common underlying processes perturbed by risk loci. Furthermore, we show that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non-immune traits to assess its applicability to complex traits in general. We find that genes in loci associated to height and lipid levels assemble into significantly connected networks but did not detect excess connectivity among Type 2 Diabetes (T2D) loci beyond chance. Taken together, our results constitute evidence that, for many of the complex diseases studied here, common genetic associations implicate regions encoding proteins that physically interact in a preferential manner, in line with observations in Mendelian disease.
Resumo:
Blockade of cytokines, particularly of tumour necrosis factor alpha (TNF-alpha), in immuno-inflammatory diseases, has led to the greatest advances in medicine of recent years. We did a thorough review of the literature with a focus on inflammation models in rodents on modified gene expression or bioactivity for IL-1, IL-6, and TNF-alpha, and we summarized the results of randomized controlled clinical trials in human disease. What we have learned herewith is that important information can be achieved by the use of animal models in complex, immune-mediated diseases. However, a clear ranking for putative therapeutic targets appears difficult to obtain from an experimental approach alone. This is primarily due to the fact that none of the disease models has proven to cover more than one crucial pathogenetic aspect of the complex cascade of events leading to characteristic clinical disease signs and symptoms. This supports the notion that the addressed human immune-mediated diseases are polygenic and the summation of genetic, perhaps epigenetic, and environmental factors. Nevertheless, it has become apparent, so far, that TNF-alpha is of crucial importance in the development of antigen-dependent and antigen-independent models of inflammation, and that these results correlate well with clinical success. With some delay, clinical trials in conditions having some relationship with rheumatoid arthritis (RA) indicate new opportunities for blocking IL-1 or IL-6 therapeutically. It appears, therefore, that a translational approach with critical, mutual reflection of simultaneously performed experiments and clinical trials is important for rapid identification of new targets and development of novel treatment options in complex, immune-mediated, inflammatory diseases.
Resumo:
Cytokines are important mediators involved in the successful outcome of pregnancy. The concept of pregnancy as biased toward a Th2 immune response states that Th1 type cytokines are associated with pregnancy failure and that Th2 cytokines are protective and counteract pregnancy-related disorders. Studies at the level of the maternal-fetal interface, in the maternal circulation and in cells of peripheral blood have shown that the Th2 concept of pregnancy is an oversimplification. Both Th1 and Th2 type cytokines play a role at different stages of pregnancy and are adapted to the localization and function of cells and tissues. The changes of local and systemic cytokine patterns during pregnancy correspond to neuroendocrine changes with hormones as powerful modulators of cytokine expression. Several autoimmune disorders show a modulation of disease activity during and after pregnancy. In rheumatic diseases with a predominance of a Th1 immune response, a shift to a Th2 type immune response during pregnancy has been regarded as beneficial. Studies of pregnant patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) have shown a cytokine expression similar to that found in healthy pregnant women. Significant differences were present only for a few cytokines and seemed related to the activity of the underlying disease. Interestingly, a gestational increase of cytokine inhibitors interleukin 1 receptor antagonist (IL-1ra) and soluble tumor necrosis factor receptor (sTNFR) in the circulation corresponded to low disease activity in RA. The influence of hormones and cytokines on autoimmune disease is an issue for further study.
Resumo:
This dissertation has three separate parts: the first part deals with the general pedigree association testing incorporating continuous covariates; the second part deals with the association tests under population stratification using the conditional likelihood tests; the third part deals with the genome-wide association studies based on the real rheumatoid arthritis (RA) disease data sets from Genetic Analysis Workshop 16 (GAW16) problem 1. Many statistical tests are developed to test the linkage and association using either case-control status or phenotype covariates for family data structure, separately. Those univariate analyses might not use all the information coming from the family members in practical studies. On the other hand, the human complex disease do not have a clear inheritance pattern, there might exist the gene interactions or act independently. In part I, the new proposed approach MPDT is focused on how to use both the case control information as well as the phenotype covariates. This approach can be applied to detect multiple marker effects. Based on the two existing popular statistics in family studies for case-control and quantitative traits respectively, the new approach could be used in the simple family structure data set as well as general pedigree structure. The combined statistics are calculated using the two statistics; A permutation procedure is applied for assessing the p-value with adjustment from the Bonferroni for the multiple markers. We use simulation studies to evaluate the type I error rates and the powers of the proposed approach. Our results show that the combined test using both case-control information and phenotype covariates not only has the correct type I error rates but also is more powerful than the other existing methods. For multiple marker interactions, our proposed method is also very powerful. Selective genotyping is an economical strategy in detecting and mapping quantitative trait loci in the genetic dissection of complex disease. When the samples arise from different ethnic groups or an admixture population, all the existing selective genotyping methods may result in spurious association due to different ancestry distributions. The problem can be more serious when the sample size is large, a general requirement to obtain sufficient power to detect modest genetic effects for most complex traits. In part II, I describe a useful strategy in selective genotyping while population stratification is present. Our procedure used a principal component based approach to eliminate any effect of population stratification. The paper evaluates the performance of our procedure using both simulated data from an early study data sets and also the HapMap data sets in a variety of population admixture models generated from empirical data. There are one binary trait and two continuous traits in the rheumatoid arthritis dataset of Problem 1 in the Genetic Analysis Workshop 16 (GAW16): RA status, AntiCCP and IgM. To allow multiple traits, we suggest a set of SNP-level F statistics by the concept of multiple-correlation to measure the genetic association between multiple trait values and SNP-specific genotypic scores and obtain their null distributions. Hereby, we perform 6 genome-wide association analyses using the novel one- and two-stage approaches which are based on single, double and triple traits. Incorporating all these 6 analyses, we successfully validate the SNPs which have been identified to be responsible for rheumatoid arthritis in the literature and detect more disease susceptibility SNPs for follow-up studies in the future. Except for chromosome 13 and 18, each of the others is found to harbour susceptible genetic regions for rheumatoid arthritis or related diseases, i.e., lupus erythematosus. This topic is discussed in part III.
Resumo:
OBJECTIVE: To evaluate the reliability and validity of a novel ultrasound (US) imaging method to measure metacarpophalangeal (MCP) and proximal interphalangeal (PIP) finger joint cartilage. METHODS: We examined 48 patients with rheumatoid arthritis (RA), 18 patients with osteoarthritis (OA), 24 patients with unclassified arthritis of the finger joints, and 34 healthy volunteers. The proximal cartilage layer of MCP and PIP joints for fingers 2-5 was bilaterally visualized from a posterior view, with joints in approximately 90 degrees flexion. Cartilage thickness was measured with integrated tools on static images. External validity was assessed by measuring radiologic joint space width (JSW) and a numeric joint space narrowing (JSN) score in patients with RA. RESULTS: Precise measurement was possible for 97.5% of MCP and 94.2% of PIP joints. Intraclass correlation coefficients for bilateral total joint US scores were 0.844 (95% confidence interval [95% CI] 0.648-0.935) for interobserver comparisons and 0.928 (95% CI 0.826-0.971) for intraobserver comparisons (using different US devices). The US score correlated with JSN for both hands (adjusted R(2) = 0.513, P < 0.001) and JSW of the same finger joints (adjusted R(2) = 0.635, P < 0.001). Reduced cartilage shown by US allowed discrimination of early symptomatic OA versus early RA and healthy joints. In patients with RA, US scores correlated with duration of treatment-resistant, progressive RA. CONCLUSION: The US method of direct visualization and quantification of cartilage in MCP and PIP joints is objective, reliable, valid, and can be useful for diagnostic purposes in patients with arthritis.
Resumo:
This article reports the most recent work of the OMERACT Ultrasound Task Force (post OMERACT 8) and highlights of future research priorities discussed at the OMERACT 9 meeting, Kananaskis, Canada, May 2008. Results of 3 studies were presented: (1) assessing intermachine reliability; (2) applying the scoring system developed in the hand to other joints most commonly affected in rheumatoid arthritis (RA); and (3) assessing interobserver reliability on a deep target joint (shoulder). Results demonstrated good intermachine reliability between multiple examiners, and good applicability of the scoring system for the hand on other joints (including shoulder). Study conclusions were discussed and a future research agenda was generated, notably the further development of a Global OMERACT Sonography Scoring (GLOSS) system in RA, emphasizing the importance of testing feasibility and added value over standard clinical variables. Future disease areas of importance to develop include a scoring system for enthesitis and osteoarthritis.
Resumo:
BACKGROUND: Fibromyalgia syndrome (FMS) is frequently associated with psychiatric conditions, particularly anxiety. Deficits in contingency learning during fear conditioning have been hypothesized to increase anxiety and, consequently, pain sensation in susceptible individuals. The goal of this study was to examine the relationship between contingency learning and pain experience in subjects with FMS and rheumatoid arthritis (RA). METHODS: Fourteen female FMS subjects, 14 age-matched female RA subjects and 14 age-matched female healthy controls (HCs) were included in a fear-conditioning experiment. The conditioned stimulus (CS) consisted of visual signs, the unconditioned stimulus (US) of thermal stimuli. CS- predicted low-temperature exposure (US), while CS+ was followed by low or high temperature. RESULTS: In the FMS group, only 50% of the subjects were aware of the US-CS contingency, whereas 86% of the RA subjects and all of the HCs were aware of the contingency. CS+ induced more anxiety than CS- in RA subjects and HCs. As expected, low-temperature exposure was experienced as less painful after CS- than after CS+ in these subjects. FMS subjects did not show such adaptive conditioning. The effects of the type of CS on heart rate changes were significant in the HCs and the aware FMS subjects, but not in the unaware FMS subjects. CONCLUSIONS: Contingency learning deficits represent a potentially promising and specific, but largely unstudied, psychopathological factor in FMS. Deficits in contingency learning may increase anxiety and, consequently, pain sensation. These findings have the potential to contribute to the development of novel therapeutic approaches for FMS.
Resumo:
Throughout the last decade, increasing awareness has been raised on issues related to reproduction in rheumatic diseases including basic research to clarify the important role of estrogens in the etiology and pathophysiology of immune/inflammatory diseases. Sub- or infertility is a heterogeneous condition that can be related to immunological mechanisms, to pregnancy loss, to disease burden, to therapy, and to choices in regard to family size. Progress in reproductive medicine has made it possible for more patients with rheumatic disease to have children. Active disease in women with rheumatoid arthritis (RA) affects their children's birth weight and may have long-term effects on their future health status. Pregnancy complications as preeclampsia and intrauterine growth restriction are still increased in patients with systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS), however, biomarkers can monitor adverse events, and several new therapies may improve outcomes. Pregnancies in women with APS remain a challenge, and better therapies for the obstetric APS are needed. New prospective studies indicate improved outcomes for pregnancies in women with rare diseases like systemic sclerosis and vasculitis. TNF inhibitors hold promise for maintaining remission in rheumatological patients and may be continued at least in the first half of pregnancy. Pre-conceptional counseling and interdisciplinary management of pregnancies are essential for ensuring optimal pregnancy outcomes.
Resumo:
BACKGROUND Receptor activator of NF-κB ligand (RANKL) is expressed as either surface (hRANKL1, hRANKL2) or soluble (hRANKL3) form. RANKL is involved in multifaceted processes of immunoregulation and bone resorption such as they occur in rheumatoid arthritis (RA). Interestingly, activated basophils, which are effector cells in allergic inflammation, contribute to the progress of collagen-induced arthritis (CIA), a mouse model for RA. Here, we investigate under which conditions human basophils express RANKL. METHODS Among other stimuli, basophils were cultured with IL-3 alone. Alternatively, as a secondary stimulus, IgER-dependent or IgER-independent agents were added simultaneously either with IL-3 or after prolonged IL-3 culturing. Expression of RANKL protein and mRNA was analyzed by flow cytometry, ELISA, and real-time PCR. A coculture system was applied to investigate biological activity of basophil-derived RANKL. RESULTS We show that in human basophils, IL-3 but no other stimulus induces de novo expression of soluble and surface RANKL, of which the latter enhances survival of MoDC. Upon simultaneous stimulation, IgER cross-linking reduces surface RANKL expression, while IgER-independent stimuli have no effect. This is in contrast to consecutive stimulation, as triggering with both IgER-dependent and IgER-independent stimuli enhances RANKL expression, particularly in its soluble form. Real-time PCR analysis shows that RANKL expression is mainly regulated at the mRNA level. CONCLUSION This study identifies IL-3 as a potent inducer of RANKL expression in human basophils, suggesting them to interact with bone physiology and activation of immune cells. IgER-dependent and IgER-independent stimuli modulate the IL-3-mediated RANKL expression in a time- and stimulus-dependent fashion.
Resumo:
Copolymer 1 [poly(Y,E,A,K)] is a random synthetic amino acid copolymer of l-tyrosine, l-glutamic acid, l-alanine, and l-lysine that is effective both in suppression of experimental allergic encephalomyelitis and in the treatment of relapsing forms of multiple sclerosis. Copolymer 1 binds promiscuously and very efficiently to purified HLA-DR molecules within the peptide-binding groove. In the present study, YEAK and YEAK-related copolymers and type II collagen (CII) peptide 261–273, a candidate autoantigen in rheumatoid arthritis (RA), competed for binding to RA-associated HLA-DR molecules encoded by DRB1*0101 and DRB1*0401. Moreover, these copolymers (particularly YEAK, YAK, and YEK) inhibited the response of DR1- and DR4-restricted T cell clones to the CII epitope 261–273 by >50%. This direct evidence both for competitive interactions of these copolymers and CII peptide with RA-associated HLA-DR molecules and for inhibition of CII-specific T cell responses suggests that these compounds should be evaluated in animal models for rheumatoid arthritis.
Resumo:
The transcription factor NF-κB is a pivotal regulator of inflammatory responses. While the activation of NF-κB in the arthritic joint has been associated with rheumatoid arthritis (RA), its significance is poorly understood. Here, we examine the role of NF-κB in animal models of RA. We demonstrate that in vitro, NF-κB controlled expression of numerous inflammatory molecules in synoviocytes and protected cells against tumor necrosis factor α (TNFα) and Fas ligand (FasL) cytotoxicity. Similar to that observed in human RA, NF-κB was found to be activated in the synovium of rats with streptococcal cell wall (SCW)-induced arthritis. In vivo suppression of NF-κB by either proteasomal inhibitors or intraarticular adenoviral gene transfer of super-repressor IκBα profoundly enhanced apoptosis in the synovium of rats with SCW- and pristane-induced arthritis. This indicated that the activation of NF-κB protected the cells in the synovium against apoptosis and thus provided the potential link between inflammation and hyperplasia. Intraarticular administration of NF-kB decoys prevented the recurrence of SCW arthritis in treated joints. Unexpectedly, the severity of arthritis also was inhibited significantly in the contralateral, untreated joints, indicating beneficial systemic effects of local suppression of NF-κB. These results establish a mechanism regulating apoptosis in the arthritic joint and indicate the feasibility of therapeutic approaches to RA based on the specific suppression of NF-κB.
Resumo:
The synovial membrane (SM) of affected joints in ankylosing spondylitis (AS) is infiltrated by germinal center-like aggregates (foci) of lymphocytes similar to rheumatoid arthritis (RA). We characterized the rearranged heavy chain variable segment (VH) genes in the SM for gene usage and the mutational pattern to elucidate the B lymphocyte involvement in AS.
Resumo:
This report concerns a clinical trial for rheumatoid arthritis (RA), approved by the US National Institutes of Health and the Food and Drug Administration. An amphotropic retrovirus (MFG-IRAP) was used ex vivo to transfer a cDNA encoding human interleukin-1 receptor antagonist (IL-1Ra) to synovium. The protocol required the transduced cells to secrete at least 30 ng IL-1Ra/106 cells per 48 h before reimplantation. Here we have evaluated various protocols for their efficiency in transducing cultures of human rheumatoid synoviocytes. The most reliably efficient methods used high titer retrovirus (approximately 108 infectious particles/ml). Transduction efficiency was increased further by exposing the cells to virus under flow-through conditions. The use of dioctadecylamidoglycylspermine (DOGS) as a polycation instead of Polybrene (hexadimethrine bromide) provided an additional small increment in efficiency. Under normal conditions of static transduction, standard titer, clinical grade retrovirus (approximately 5 × 105 infectious particles/ml) failed to achieve the expression levels required by the clinical trial. However, the shortfall could be remedied by increasing the time of transduction under static conditions, transducing under flow-through conditions, or transducing during centrifugation.
Resumo:
We identified an autoantibody that reacts with calpastatin [an inhibitor protein of the calcium-dependent neutral protease calpain (EC 3.4.22.17)]. In early immunoblot studies, sera from patients with rheumatoid arthritis (RA) recognized unidentified 60-, 45-, and 75-kDa proteins in HeLa cell extracts. To identify these autoantigens, we used patient sera to clone cDNAs from a lambda gt11 expression library. We isolated clones of four genes that expressed fusion proteins recognized by RA sera. The 1.2-kb cDNA insert (termed RA-6) appeared to encode a polypeptide corresponding to the 60-kDa antigen from HeLa cells, since antibodies bound to the RA-6 fusion protein also reacted with a 60-kDa HeLa protein. The deduced amino acid sequence of the RA-6 cDNA was completely identical with the C-terminal 178 amino acids of human calpastatin except for one amino acid substitution. Patient sera that reacted with the RA-6 also bound pig muscle calpastatin, and a monoclonal antibody to human calpastatin recognized the RA-6 fusion protein, confirming the identity of RA-6 with calpastatin. Moreover, the purified RA-6 fusion protein inhibited the proteolytic activity of calpain, and IgG from a serum containing anti-calpastatin antibodies blocked the calpastatin activity of the RA-6 fusion protein. Immunoblots of the RA-6 product detected autoantibodies to calpastatin in 57% of RA patients; this incidence was significantly higher than that observed in other systemic rheumatic diseases, including systemic lupus erythematosus (27%), polymyositis/dermatomyositis (24%), systemic sclerosis (38%), and overlap syndrome (29%). Thus, anti-calpastatin antibodies are present most frequently in patients with RA and may participate in pathogenic mechanisms of rheumatic diseases.