952 resultados para Retaining wall. Instrumentation. Anchors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

EMM-FM2011 – First Euro Mediterranean Meeting on Functionalized Materials, edited by Cheikhrouhou, A. 1st Euro Mediterranean Meeting on Functionalized Materials (EMM-FM). Sousse, TUNISIA . Sep. 06-10, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The diagnosis of invasive candidiasis is difficult because there are no specific clinical manifestations of the disease and colonization and infection are difficult to distinguish. In the last decade, much effort has been made to develop reliable tests for rapid diagnosis of invasive candidiasis, but none of them have found widespread clinical use. Results: Antibodies against a recombinant N-terminal fragment of the Candida albicans germ tube-specific antigen hyphal wall protein 1 (Hwp1) generated in Escherichia coli were detected by both immunoblotting and ELISA tests in a group of 36 hematological or Intensive Care Unit patients with invasive candidiasis and in a group of 45 control patients at high risk for the mycosis who did not have clinical or microbiological data to document invasive candidiasis. Results were compared with an immunofluorescence test to detect antibodies to C. albicans germ tubes (CAGT). The sensitivity, specificity, positive and negative predictive values of a diagnostic test based on the detection of antibodies against the N-terminal fragment of Hwp1 by immunoblotting were 27.8 %, 95.6 %, 83.3 % and 62.3 %, respectively. Detection of antibodies to the N-terminal fragment of Hwp1 by ELISA increased the sensitivity (88.9 %) and the negative predictive value (90.2 %) but slightly decreased the specificity (82.6 %) and positive predictive values (80 %). The kinetics of antibody response to the N-terminal fragment of Hwp1 by ELISA was very similar to that observed by detecting antibodies to CAGT. Conclusion: An ELISA test to detect antibodies against a recombinant N-terminal fragment of the C. albicans germ tube cell wall antigen Hwp1 allows the diagnosis of invasive candidiasis with similar results to those obtained by detecting antibodies to CAGT but without the need of treating the sera to adsorb the antibodies against the cell wall surface of the blastospore.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of wall temperature on stabilities of hypersonic boundary layer over a 7-degree half-cone-angle blunt cone are studied by using both direct numerical simulation (DNS) and linear stability theory (LST) analysis. Four isothermal wall cases with Tw/T0= 0.5, 0.7, 0.8 and 0.9, as well as an adiabatic wall case are considered. Results of both DNS and LST indicate that wall temperature has significant effects on the growth of disturbance waves. Cooling the surface accelerates unstable Mack II mode waves and decelerates the first mode (Tollmien–Schlichting mode) waves. LST results show that growth rate of the most unstable Mack II mode waves for the cases of cold wall Tw/T0=0.5 and 0.7 are about 45% and 25% larger than that for the adiabatic wall, respectively. Numerical results show that surface cooling modifies the profiles of rdut/dyn and temperature in the boundary layers, and thus changes the stability haracteristic of the boundary layers, and then effects on the growth of unstable waves. The results of DNS indicate that the disturbances with the frequency range from about 119.4 to 179.1 kHz, including the most unstable Mack modes, produce strong mode competition in the downstream region from about 11 to 100 nose radii. And adiabatic wall enhances the amplitudes of disturbance according to the results of DNS, although the LST indicates that the growth rate of the disturbance of cold wall is larger. That because the growth of the disturbance does not only depend on the development of the second unstable mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In near wall measurements with microPIV/PTV, whether seeding particles can be effectively used to detect local fluid velocity is a crucial problem. This talk presents our recent measurements in microchannels [1][2]. Based on measured velocity profiles with 200nm and 50nm in pure water, we found that the measured velocity profiles are agreed with the theoretical values in the middle of channel, but large deviations between measured data and theoretical prediction appear close to wall (0.25mm wall on the velocity deviation appeared in shear flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unlike most previous studies on the transverse vortex-induced vibration(VIV) of a cylinder mainly under the wallfree condition (Williamson & Govardhan,2004),this paper experimentally investigates the vortex-induced vibration of a cylinder with two degrees of freedom near a rigid wall exposed to steady flow.The amplitude and frequency responses of the cylinder are discussed.The lee wake flow patterns of the cylinder undergoing VIV were visualized by employing the hydrogen bubble technique.The effects of the gap-to-diameter ratio (e0/D) and the mass ratio on the vibration amplitude and frequency are analyzed.Comparisons of VIV response of the cylinder are made between one degree (only transverse) and two degrees of freedom (streamwise and transverse) and those between the present study and previous ones.The experimental observation indicates that there are two types of streamwise vibration,i.e.the first streamwise vibration (FSV) with small amplitude and the second streamwise vibration (SSV) which coexists with transverse vibration.The vortex shedding pattem for the FSV is approximately symmetric and that for the SSV is alternate.The first streamwise vibration tends to disappear with the decrease of e0/D.For the case of large gap-to-diameter ratios (e.g.e0/D = 0.54~1.58),the maximum amplitudes of the second streamwise vibration and transverse one increase with the increasing gapto-diameter ratio.But for the case of small gap-to-diameter ratios (e.g.e0/D = 0.16,0.23),the vibration amplitude of the cylinder increases slowly at the initial stage (i.e.at small reduced velocity V,),and across the maximum amplitude it decreases quickly at the last stage (i.e.at large Vr).Within the range ofthe examined small mass ratio (m<4),both streamwise and transverse vibration amplitude of the cylinder decrease with the increase of mass ratio for the fixed value of V,.The vibration range (in terms of Vr ) tends to widen with the decrease of the mass ratio.In the second streamwise vibration region,the vibration frequency of the cylinder with a small mass ratio (e.g.mx = 1.44) undergoes a jump at a certain Vr,.The maximum amplitudes of the transverse vibration for two-degree-of-freedom case is larger than that for one-degree-of-freedom case,but the transverse vibration frequency of the cylinder with two degrees of freedom is lower than that with one degree of freedom (transverse).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypervelocity impact of meteoroids and orbital debris poses a serious and growing threat to spacecraft. To study hypervelocity impact phenomena, a comprehensive ensemble of real-time concurrently operated diagnostics has been developed and implemented in the Small Particle Hypervelocity Impact Range (SPHIR) facility. This suite of simultaneously operated instrumentation provides multiple complementary measurements that facilitate the characterization of many impact phenomena in a single experiment. The investigation of hypervelocity impact phenomena described in this work focuses on normal impacts of 1.8 mm nylon 6/6 cylinder projectiles and variable thickness aluminum targets. The SPHIR facility two-stage light-gas gun is capable of routinely launching 5.5 mg nylon impactors to speeds of 5 to 7 km/s. Refinement of legacy SPHIR operation procedures and the investigation of first-stage pressure have improved the velocity performance of the facility, resulting in an increase in average impact velocity of at least 0.57 km/s. Results for the perforation area indicate the considered range of target thicknesses represent multiple regimes describing the non-monotonic scaling of target perforation with decreasing target thickness. The laser side-lighting (LSL) system has been developed to provide ultra-high-speed shadowgraph images of the impact event. This novel optical technique is demonstrated to characterize the propagation velocity and two-dimensional optical density of impact-generated debris clouds. Additionally, a debris capture system is located behind the target during every experiment to provide complementary information regarding the trajectory distribution and penetration depth of individual debris particles. The utilization of a coherent, collimated illumination source in the LSL system facilitates the simultaneous measurement of impact phenomena with near-IR and UV-vis spectrograph systems. Comparison of LSL images to concurrent IR results indicates two distinctly different phenomena. A high-speed, pressure-dependent IR-emitting cloud is observed in experiments to expand at velocities much higher than the debris and ejecta phenomena observed using the LSL system. In double-plate target configurations, this phenomena is observed to interact with the rear-wall several micro-seconds before the subsequent arrival of the debris cloud. Additionally, dimensional analysis presented by Whitham for blast waves is shown to describe the pressure-dependent radial expansion of the observed IR-emitting phenomena. Although this work focuses on a single hypervelocity impact configuration, the diagnostic capabilities and techniques described can be used with a wide variety of impactors, materials, and geometries to investigate any number of engineering and scientific problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pseudo-spin model is intended to describe the physical dynamics of unbound electrons in the wall of cytoskeletal microtubule (MT). Due to the inherent symmetry of the structure and the electric properties in the MT, one may treat it as a one-dimensional ferroelectric system, and describe the nonlinear dynamics of dimer electric dipoles in one protofilament of the MT by virtue of the double-well potential. Consequently, the physical problem has been mapped onto the pseudo-spin system, and the mean-field approximation has been taken to get some physical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microtubules (MT) are composed of 13 protofilaments, each of which is a series of two-state tubulin dimers. In the MT wall, these dimers can be pictured as "lattice" sites similar to crystal lattices. Based on the pseudo-spin model, two different location states of the mobile electron in each dimer are proposed. Accordingly, the MT wall is described as an anisotropic two-dimensional (2D) pseudo-spin system considering a periodic triangular "lattice". Because three different "spin-spin" interactions in each cell exist periodically in the whole MT wall, the system may be shown to be an array of three types of two-pseudo-spin-state dimers. For the above-mentioned condition, the processing of quantum information is presented by using the scheme developed by Lloyd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A substantial amount of important scientific information is contained within astronomical data at the submillimeter and far-infrared (FIR) wavelengths, including information regarding dusty galaxies, galaxy clusters, and star-forming regions; however, these wavelengths are among the least-explored fields in astronomy because of the technological difficulties involved in such research. Over the past 20 years, considerable efforts have been devoted to developing submillimeter- and millimeter-wavelength astronomical instruments and telescopes.

The number of detectors is an important property of such instruments and is the subject of the current study. Future telescopes will require as many as hundreds of thousands of detectors to meet the necessary requirements in terms of the field of view, scan speed, and resolution. A large pixel count is one benefit of the development of multiplexable detectors that use kinetic inductance detector (KID) technology.

This dissertation presents the development of a KID-based instrument including a portion of the millimeter-wave bandpass filters and all aspects of the readout electronics, which together enabled one of the largest detector counts achieved to date in submillimeter-/millimeter-wavelength imaging arrays: a total of 2304 detectors. The work presented in this dissertation has been implemented in the MUltiwavelength Submillimeter Inductance Camera (MUSIC), a new instrument for the Caltech Submillimeter Observatory (CSO).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The digital holographic interferometry is used in the dynamic and static measurements of phase variation induced by domain inversion. For the first time, to the authors' knowledge, they observe the existence of ridge-shape phase distribution adjacent to 180 degrees domain wall in congruent LiNbO3 crystal. During the domain wall motion, the phase variations are not uniform but have obvious relaxations. In the static measurement, the ridge elevation can vary linearly with the uniform electric field. The reasonable assumptions are proposed to explain these effects. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of an investigation of wind tunnel wall interference in a two-dimensional wind tunnel at high Mach numbers. The results are presented in the form of curves of lift coefficient versus the ratio of model chord to tunnel height, as functions of Mach number and angle of attack. The investigation was carried out by the authors at the Guggenheim Aeronautical Laboratory of the California Institute of Technology during the school year 1944-45.

Tests were carried out on the NACA low drag airfoil section 65,1-012 at Mach numbers from .60 to .80, and angles of attack of from 1 to 3 degrees. Models were 1", 2", 4" and 6" chord, giving values of the chord to tunnel height ration of .1 to .6. Schlieren photographs were made of shock waves where they occurred.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We deliver the general conditions on the synthetic proportions for a homogeneous mixture of ferro- and nonmagnetic substances to become left-handed. As an alternative for left-handed metamaterials, we consider mixing ferromagnetic materials with nonmagnetic microscopic particles. In the mixture, the ferromagnetic material provides the needed permeability via domain wall resonances at high frequencies, whereas the nonmagnetic material gives the required permittivity. Using the effective medium theory, we have found that when the concentration of the nonmagnetic particles falls into a certain range, the refractive index of the mixture is negative, n < 0, which includes the double negative ( epsilon < 0 and mu < 0) and other cases ( e. g. epsilon < 0 and mu > 0). We finally give the requirements on the microscopic material properties for the ferromagnetic materials to reach the domain wall resonances at high frequencies.