975 resultados para Response prediction
Resumo:
Considerable past research has explored relationships between vehicle accidents and geometric design and operation of road sections, but relatively little research has examined factors that contribute to accidents at railway-highway crossings. Between 1998 and 2002 in Korea, about 95% of railway accidents occurred at highway-rail grade crossings, resulting in 402 accidents, of which about 20% resulted in fatalities. These statistics suggest that efforts to reduce crashes at these locations may significantly reduce crash costs. The objective of this paper is to examine factors associated with railroad crossing crashes. Various statistical models are used to examine the relationships between crossing accidents and features of crossings. The paper also compares accident models developed in the United States and the safety effects of crossing elements obtained using Korea data. Crashes were observed to increase with total traffic volume and average daily train volumes. The proximity of crossings to commercial areas and the distance of the train detector from crossings are associated with larger numbers of accidents, as is the time duration between the activation of warning signals and gates. The unique contributions of the paper are the application of the gamma probability model to deal with underdispersion and the insights obtained regarding railroad crossing related vehicle crashes. Considerable past research has explored relationships between vehicle accidents and geometric design and operation of road sections, but relatively little research has examined factors that contribute to accidents at railway-highway crossings. Between 1998 and 2002 in Korea, about 95% of railway accidents occurred at highway-rail grade crossings, resulting in 402 accidents, of which about 20% resulted in fatalities. These statistics suggest that efforts to reduce crashes at these locations may significantly reduce crash costs. The objective of this paper is to examine factors associated with railroad crossing crashes. Various statistical models are used to examine the relationships between crossing accidents and features of crossings. The paper also compares accident models developed in the United States and the safety effects of crossing elements obtained using Korea data. Crashes were observed to increase with total traffic volume and average daily train volumes. The proximity of crossings to commercial areas and the distance of the train detector from crossings are associated with larger numbers of accidents, as is the time duration between the activation of warning signals and gates. The unique contributions of the paper are the application of the gamma probability model to deal with underdispersion and the insights obtained regarding railroad crossing related vehicle crashes.
Resumo:
A study was done to develop macrolevel crash prediction models that can be used to understand and identify effective countermeasures for improving signalized highway intersections and multilane stop-controlled highway intersections in rural areas. Poisson and negative binomial regression models were fit to intersection crash data from Georgia, California, and Michigan. To assess the suitability of the models, several goodness-of-fit measures were computed. The statistical models were then used to shed light on the relationships between crash occurrence and traffic and geometric features of the rural signalized intersections. The results revealed that traffic flow variables significantly affected the overall safety performance of the intersections regardless of intersection type and that the geometric features of intersections varied across intersection type and also influenced crash type.
Resumo:
Survival probability prediction using covariate-based hazard approach is a known statistical methodology in engineering asset health management. We have previously reported the semi-parametric Explicit Hazard Model (EHM) which incorporates three types of information: population characteristics; condition indicators; and operating environment indicators for hazard prediction. This model assumes the baseline hazard has the form of the Weibull distribution. To avoid this assumption, this paper presents the non-parametric EHM which is a distribution-free covariate-based hazard model. In this paper, an application of the non-parametric EHM is demonstrated via a case study. In this case study, survival probabilities of a set of resistance elements using the non-parametric EHM are compared with the Weibull proportional hazard model and traditional Weibull model. The results show that the non-parametric EHM can effectively predict asset life using the condition indicator, operating environment indicator, and failure history.
Resumo:
The driving task requires sustained attention during prolonged periods, and can be performed in highly predictable or repetitive environments. Such conditions could create hypovigilance and impair performance towards critical events. Identifying such impairment in monotonous conditions has been a major subject of research, but no research to date has attempted to predict it in real-time. This pilot study aims to show that performance decrements due to monotonous tasks can be predicted through mathematical modelling taking into account sensation seeking levels. A short vigilance task sensitive to short periods of lapses of vigilance called Sustained Attention to Response Task is used to assess participants‟ performance. The framework for prediction developed on this task could be extended to a monotonous driving task. A Hidden Markov Model (HMM) is proposed to predict participants‟ lapses in alertness. Driver‟s vigilance evolution is modelled as a hidden state and is correlated to a surrogate measure: the participant‟s reactions time. This experiment shows that the monotony of the task can lead to an important decline in performance in less than five minutes. This impairment can be predicted four minutes in advance with an 86% accuracy using HMMs. This experiment showed that mathematical models such as HMM can efficiently predict hypovigilance through surrogate measures. The presented model could result in the development of an in-vehicle device that detects driver hypovigilance in advance and warn the driver accordingly, thus offering the potential to enhance road safety and prevent road crashes.
Resumo:
Franchisor failure is one of the most problematic areas of the franchise relationship. It impacts negatively on landlords and other suppliers, but the contracting parties that are currently without legal rights to respond when a franchisor fails, and thus without consumer protection, are its franchisees. In this thesis I explore the current contractual, regulatory and commercial environment that franchisees inhabit, within the context of franchisor failure. I conclude that ex ante there are opportunities to level the playing field through consumer protection legislation. I also conclude that the task is not one solely for the consumer protection legislation; the problem should also be addressed ex post through the Corporations Act.
Resumo:
This paper presents a novel method for remaining useful life prediction using the Elliptical Basis Function (EBF) network and a Markov chain. The EBF structure is trained by a modified Expectation-Maximization (EM) algorithm in order to take into account the missing covariate set. No explicit extrapolation is needed for internal covariates while a Markov chain is constructed to represent the evolution of external covariates in the study. The estimated external and the unknown internal covariates constitute an incomplete covariate set which are then used and analyzed by the EBF network to provide survival information of the asset. It is shown in the case study that the method slightly underestimates the remaining useful life of an asset which is a desirable result for early maintenance decision and resource planning.
Resumo:
This study explores three-dimensional nonlineardynamic responses of typical tall buildings with and without setbacks under blast loading. These 20 storey reinforced concrete buildings have been designed for normal (dead, live and wind)loads. The influence of the setbacks on the lateral load response due to blasts in terms of peak deflections, accelerations, inter-storey drift and bending moments at critical locations (including hinge formation) were investigated. Structural response predictions were performed with a commercially available three-dimensional finite element analysis programme using non-linear direct integration time history analyses. Results obtained for buildings with different setbacks were compared and conclusions made. The comparisons revealed that buildings have setbacks that protect the tower part above the setback level from blast loading show considerably better response in terms of peak displacement and interstorey drift, when compared to buildings without setbacks. Rotational accelerations were found to depend on the periods of the rotational modes. Abrupt changes in moments and shears are experienced near the levels of the setbacks. Typical twenty storey tall buildings with shear walls and frames that are designed for only normaln loads perform reasonably well, without catastrophic collapse, when subjected to a blast that is equivalent to 500 kg TNT at a standoff distance of 10 m.
Resumo:
From 27 January to 8 February during the summer of 2009, southern Australia experienced one of the nation‘s most severe heatwaves. Governments, councils, utilities, hospitals and emergency response organisations and the community were largely underprepared for an extreme event of this magnitude. This case study targets the experience and challenges faced by decision makers and policy makers and focuses on the major metropolitan areas affected by the heatwave — Melbourne and Adelaide. The study examines the 2009 heatwave‘s characteristics; its impacts (on human health, infrastructure and human services); the degree of adaptive capacity (vulnerability and resilience) of various sectors, communities and individuals; and the reactive responses of government and emergency and associated services and their effectiveness. Barriers and challenges to adaptation and increasing resilience are also identified and further areas for research are suggested. This study does not include details of the heatwave‘s effects beyond Victoria and South Australia, or its economic impacts, or of Victoria‘s 'Black Saturday‘ bushfires.
Resumo:
Through international agreement to the United Nations Framework Convention on Climate Change and the Kyoto Protocol the global community has acknowledged that climate change is a global problem and sought to achieve reductions in global emissions, within a sufficient timeframe, to avoid dangerous anthropogenic interference with the climate system. The sheer magnitude of emissions reductions required within such an urgent timeframe presents a challenge to conventional regulatory approaches both internationally and within Australia. The phenomenon of climate change is temporally and geographically challenging and it is scientifically complex and uncertain. The purpose of this paper is to analyse the current Australian legal response to climate change and to examine the legal measures which have been proposed to promote carbon trading, energy efficiency, renewable energy, and carbon sequestration initiatives across Australia. As this paper illustrates, the current Australian approach is clearly ineffective and the law as it stands overwhelmingly inadequate to address Australia’s emissions and meet the enormity of the challenges posed by climate change. Consequently, the government should look towards a more effective legal framework to achieve rapid and urgent transformations in the selection of energy sources, energy use and sequestration initiatives across the Australian community.
Resumo:
Background: Assessments of change in subjective patient reported outcomes such as health-related quality of life (HRQoL) are a key component of many clinical and research evaluations. However, conventional longitudinal evaluation of change may not agree with patient perceived change if patients' understanding of the subjective construct under evaluation changes over time (response shift) or if patients' have inaccurate recollection (recall bias). This study examined whether older adults' perception of change is in agreement with conventional longitudinal evaluation of change in their HRQoL over the duration of their hospital stay. It also investigated this level of agreement after adjusting patient perceived change for recall bias that patients may have experienced. Methods: A prospective longitudinal cohort design nested within a larger randomised controlled trial was implemented. 103 hospitalised older adults participated in this investigation at a tertiary hospital facility. The EQ-5D utility and Visual Analogue Scale (VAS) scores were used to evaluate HRQoL. Participants completed EQ-5D reports as soon as they were medically stable (within three days of admission) then again immediately prior to discharge. Three methods of change score calculation were used (conventional change, patient perceived change and patient perceived change adjusted for recall bias). Agreement was primarily investigated using intraclass correlation coefficients (ICC) and limits of agreement. Results: Overall 101 (98%) participants completed both admission and discharge assessments. The mean (SD) age was 73.3 (11.2). The median (IQR) length of stay was 38 (20-60) days. For agreement between conventional longitudinal change and patient perceived change: ICCs were 0.34 and 0.40 for EQ-5D utility and VAS respectively. For agreement between conventional longitudinal change and patient perceived change adjusted for recall bias: ICCs were 0.98 and 0.90 respectively. Discrepancy between conventional longitudinal change and patient perceived change was considered clinically meaningful for 84 (83.2%) of participants, after adjusting for recall bias this reduced to 8 (7.9%). Conclusions: Agreement between conventional change and patient perceived change was not strong. A large proportion of this disagreement could be attributed to recall bias. To overcome the invalidating effect of response shift (on conventional change) and recall bias (on patient perceived change) a method of adjusting patient perceived change for recall bias has been described.
Resumo:
This article examines the moment of exchange between artist, audience and culture in Live Art. Drawing on historical and contemporary examples, including examples from the Exist in 08 Live Art Event in Brisbane, Australia, in October 2008, it argues that Live Art - be it body art, activist art, site-specific performance, or other sorts of performative intervention in the public sphere - is characterised by a common set of claims about activating audiences, asking them to reflect on cultural norms challenged in the work. Live Art presents risky actions, in a context that blurs the boundaries between art and reality, to position audients as ‘witnesses’ who are personally implicated in, and responsible for, the actions unfolding before them. This article problematises assumptions about the way the uncertainties embedded in the Live Art encounter contribute to its deconstructive agenda. It uses the ethical theory of Emmanuel Levinas, Hans-Thies Lehmann and Dwight Conquergood to examine the mechanics of reductive, culturally-recuperative readings that can limit the efficacy of the Live Art encounter. It argues that, though ‘witnessing’ in Live Art depends on a relation to the real - real people, taking real risks, in real places - if it fails to foreground theatrical frame it is difficult for audients to develop the dual consciousness of the content, and their complicity in that content, that is the starting point for reflexivity, and response-ability, in the ethical encounter.
Resumo:
Personal reflections on the We Al-Li Program
Resumo:
Airports are typical examples of large and complex infrastructure systems. They serve a purpose of not only transporting people around the globe but are central to trade and commerce and, in a nation as large as Australia, an important means to connect people and regions. Reducing uncertainty and managing risk in such systems are not only critical tasks integral to effective management practice but equally important for border protection and national security outcomes. This latter issue has been emphasised on a national level in Australia with a number of recent enquiries taking place, most notably the Wheeler Review1 into aviation security in 2005 and the 2009 National Aviation Policy White Paper2 on the future of aviation in Australia.
Resumo:
Prognostics and asset life prediction is one of research potentials in engineering asset health management. We previously developed the Explicit Hazard Model (EHM) to effectively and explicitly predict asset life using three types of information: population characteristics; condition indicators; and operating environment indicators. We have formerly studied the application of both the semi-parametric EHM and non-parametric EHM to the survival probability estimation in the reliability field. The survival time in these models is dependent not only upon the age of the asset monitored, but also upon the condition and operating environment information obtained. This paper is a further study of the semi-parametric and non-parametric EHMs to the hazard and residual life prediction of a set of resistance elements. The resistance elements were used as corrosion sensors for measuring the atmospheric corrosion rate in a laboratory experiment. In this paper, the estimated hazard of the resistance element using the semi-parametric EHM and the non-parametric EHM is compared to the traditional Weibull model and the Aalen Linear Regression Model (ALRM), respectively. Due to assuming a Weibull distribution in the baseline hazard of the semi-parametric EHM, the estimated hazard using this model is compared to the traditional Weibull model. The estimated hazard using the non-parametric EHM is compared to ALRM which is a well-known non-parametric covariate-based hazard model. At last, the predicted residual life of the resistance element using both EHMs is compared to the actual life data.
Resumo:
Human SSB1 (single-stranded binding protein 1 [hSSB1]) was recently identified as a part of the ataxia telangiectasia mutated (ATM) signaling pathway. To investigate hSSB1 function, we performed tandem affinity purifications of hSSB1 mutants mimicking the unphosphorylated and ATM-phosphorylated states. Both hSSB1 mutants copurified a subset of Integrator complex subunits and the uncharacterized protein LOC58493/c9orf80 (henceforth minute INTS3/hSSB-associated element [MISE]). The INTS3–MISE–hSSB1 complex plays a key role in ATM activation and RAD51 recruitment to DNA damage foci during the response to genotoxic stresses. These effects on the DNA damage response are caused by the control of hSSB1 transcription via INTS3, demonstrating a new network controlling hSSB1 function.