904 resultados para Residual ductal carcinoma in situ (dcis)
Resumo:
This paper proposed a non-intrusive method of measuring the optical beam profile at the surface of the liquid crystal on silicon (LCOS) device in an optical fiber switch. This method is based on blazed grating and can be employed in situ (on-line) for two-dimensional beam profiling in the LCOS-based optical fiber switches without introducing additional components or rearranging the system. The measured beam radius was in excellent agreement with that measured by the knife-edge technique. © 2013 Elsevier Ltd.
Resumo:
Although musculoskeletal models are commonly used, validating the muscle actions predicted by such models is often difficult. In situ isometric measurements are a possible solution. The base of the skeleton is immobilized and the endpoint of the limb is rigidly attached to a 6-axis force transducer. Individual muscles are stimulated and the resulting forces and moments recorded. Such analyses generally assume idealized conditions. In this study we have developed an analysis taking into account the compliances due to imperfect fixation of the skeleton, imperfect attachment of the force transducer, and extra degrees of freedom (dof) in the joints that sometimes become necessary in fixed end contractions. We use simulations of the rat hindlimb to illustrate the consequences of such compliances. We show that when the limb is overconstrained, i.e., when there are fewer dof within the limb than are restrained by the skeletal fixation, the compliances of the skeletal fixation and of the transducer attachment can significantly affect measured forces and moments. When the limb dofs and restrained dofs are matched, however, the measured forces and moments are independent of these compliances. We also show that this framework can be used to model limb dofs, so that rather than simply omitting dofs in which a limb does not move (e.g., abduction at the knee), the limited motion of the limb in these dofs can be more realistically modeled as a very low compliance. Finally, we discuss the practical implications of these results to experimental measurements of muscle actions.
Resumo:
The key atomistic mechanisms of graphene formation on Ni for technologically relevant hydrocarbon exposures below 600 °C are directly revealed via complementary in situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. For clean Ni(111) below 500 °C, two different surface carbide (Ni2C) conversion mechanisms are dominant which both yield epitaxial graphene, whereas above 500 °C, graphene predominantly grows directly on Ni(111) via replacement mechanisms leading to embedded epitaxial and/or rotated graphene domains. Upon cooling, additional carbon structures form exclusively underneath rotated graphene domains. The dominant graphene growth mechanism also critically depends on the near-surface carbon concentration and hence is intimately linked to the full history of the catalyst and all possible sources of contamination. The detailed XPS fingerprinting of these processes allows a direct link to high pressure XPS measurements of a wide range of growth conditions, including polycrystalline Ni catalysts and recipes commonly used in industrial reactors for graphene and carbon nanotube CVD. This enables an unambiguous and consistent interpretation of prior literature and an assessment of how the quality/structure of as-grown carbon nanostructures relates to the growth modes.
Resumo:
The ontogeny of IgM-producing cells was studied in juvenile mandarin fish Simperca chuatsi, an important fish in China's aquaculture sector. The IgM-producing cells were localised through in situ hybridisation with a probe complementary to the Ig mu-chain in lymphoid-related tissues, including head kidney, spleen, thymus, intestine and gills. In head kidney, transcripts of Ig mu were first detected at 20 days post-hatching (dph) with a few positive signals. and the number of IgM-producing cells increased obviously from 39 dph onwards. At 136 dph, a large amount of positive cells were observed in the entire organ with clusters of these cells located around the blood vessels. In spleen, IgM-producing cells were found from 26 dph onwards, followed by an increase until 67 dph: clusters of positive cells were also detected around blood vessels at 102 dph. In thymus, IgM-producing cells were first observed at 39 dph; thereafter, no obvious increase was detected until 78 dph. The positive cells in thymus were distributed mainly in the outer zone of thymus. A few IgM-producing cells were still observed in thymus of 1-year-old mandarin fish. IgM-producing cells were not detected in the intestine until 87 dph, with several discrete positively stained cells distributed in the lamina propria. IgM-producing cells, scattered mainly in primary gill filaments around blood vessels, were detected in gills from 90 dph. As in other teleosts, these results indicated that the head kidney appears to be the primary organ for IgM production in mandarin fish, and IgM-producing cells exist in all organs examined in the present study, implying their lymphoid role in fish. In addition, it is suggested that vaccination after 20 dph may be much more effective in mandarin fish. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Nano-structured silicon anodes are attractive alternatives to graphitic carbons in rechargeable Li-ion batteries, owing to their extremely high capacities. Despite their advantages, numerous issues remain to be addressed, the most basic being to understand the complex kinetics and thermodynamics that control the reactions and structural rearrangements. Elucidating this necessitates real-time in situ metrologies, which are highly challenging, if the whole electrode structure is studied at an atomistic level for multiple cycles under realistic cycling conditions. Here we report that Si nanowires grown on a conducting carbon-fibre support provide a robust model battery system that can be studied by (7)Li in situ NMR spectroscopy. The method allows the (de)alloying reactions of the amorphous silicides to be followed in the 2nd cycle and beyond. In combination with density-functional theory calculations, the results provide insight into the amorphous and amorphous-to-crystalline lithium-silicide transformations, particularly those at low voltages, which are highly relevant to practical cycling strategies.
Resumo:
Nutrient-rich effluents caused rising concern due to eutrophication of aquatic environment by utilization of a large amount of formula feed. Nutrient removal and water quality were investigated by planting aquatic vegetable on artificial beds in 36-m(2) concrete fishponds. After treatment of 120 days, 30.6% of total nitrogen (TN) and 18.2% of total phosphorus (TP) were removed from the total input nutrients by 6-m(2) aquatic vegetable Ipomoea aquatica. The concentrations of TN, TP, chemical oxygen demand (COD) and chlorophyll a in planted ponds were significantly lower than those in non-planted ponds (P<0.05). Transparency of water in planted ponds was much higher than that of control ponds. No significant differences in the concentration of total ammonia nitrogen (TAN), nitrate nitrogen (NO3-N) and nitrite nitrogen (NO2--N) were found between planted and non-planted ponds. These results suggested that planting aquatic vegetable with one-sixth covered area of the fishponds could efficiently remove nutrient and improve water quality.
Resumo:
Partial rDNA sequences of Prorocentrum minimum and Takayama pulchella were amplified, cloned and sequenced. and these sequence data were deposited in the GenBank. Eight oligonucleotide probes (DNA probes) were designed based on the sequence analysis. The probes were employed to detect and identify P. minimum and T. pulchella in unialgal and mixed algal samples with a fluorescence in situ hybridization method using flow cytometry. Epifluorescence micrographs showed that these specific probes labeled with fluorescein isothiocyanate entered the algal cells and bound to target sequences, and the fluorescence signal resulting from whole-cell hybridization varied from probe to probe. These DNA probes and the hybridization protocol we developed were specific and effective for P. minimum and T. pulchella, without any specific binding to other algal species. The hybridization efficiency of different probes specific to P. minimum was in the order: PM18S02 > PM28S02 > PM28S01 > PM18S01, and that of the probes specific to T. pulchella was TP18S02 > TP28S01 > TP28S02 > TP18S01. The different hybridization efficiency of the DNA probes could also be shown in the fluorescent signals between the labeled and unlabeled cells demonstrated using flow cytometry. The DNA probes PM18S02, PM28S02; TP18S02 and TP28S01, and the protocol, were also useful for the detection of algae in natural samples.
Resumo:
Silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) were used as a new pen-cultureed biomanipulation technique to control algal blooms in Meiliang Bay of Lake Taihu. In order to evaluate the capacity of these two fishes to decrease algal blooms, diel feeding samplings were carried out in May (without algal blooms) and September (with algal blooms) in 2005. Based on estimated food consumption by the Elliott-Persson model, silver carp increased daily food consumption from 2.07 g dry weight per 100 g wet body weight in May before the outbreak of algal blooms to 4.98 g dry weight per 100 g wet body weight in September during algal blooms outbreak. However, no obvious variation of food consumption was observed in bighead carp during the study period. This species 1.88 and 1.54 g dry weight of plankton per 100 g wet body weight in May and September, respectively. Silver carp had a higher feeding capacity for plankton than bighead carp. Biotic factors (i.e., fish size and conspecific competition with natural species in the lake) may affect the feeding behaviors of both carps as well as seasonal variation of plankton communities in the pen.
Resumo:
Despite it is widely acknowledged that the ability to hydrolyze dissolved organic matter using extracellular phosphatases is diverse in fresh water phytoplankton, the competition within single species related to presence and quantity of cell-surface-bound phosphatases has not been examined in natural conditions yet. Here, we studied phytoplankton species competition in a freshwater reservoir during an in situ experiment. A natural plankton community, with the exclusion of large zooplankton, was enclosed in permeable dialysis bags inside two large containers of different bioavailable phosphate concentrations. Phytoplankton species biomass and the abundance of bacteria were determined in purpose to compare the development of enclosed microbial communities. Total and cell-surface-bound phosphatase activities in the phytoplankton were investigated using the Fluorescently Labelled Enzyme Activity (FLEA) technique that allows for direct microscopic detection of phosphatase-positive cells and, with image cytometry, enables quantification of phosphatase hydrolytic capacity. Production of extracellular phosphatases was not completely inhibited or stopped in the phosphate-enriched environment, phytoplankton cells only showed the activity less often. Under the phosphate-nonenriched conditions, the production of phosphatases was enhanced, but active species did not proliferate amongst phytoplankton assemblage. Further, specific growth rates of the phosphatase-positive species in the non-enriched environment were lower than the same phosphatase-positive species in phosphate-enriched environment. Interestingly, the phosphatase-positive cells of Ankyra ancora increased their size in both treatments equally, although the population in phosphate-enriched environment grew much faster and the cell-specific phosphatase activity was lower. We hypothesize that brand new daughter cells had sufficient phosphorus reserves and therefore did not employ extracellular phosphatases until they matured and needed extra bioavailable phosphorus to support their metabolism before cell division. Based on presented in situ experiment, we propose that the ability to hydrolyze organic polymers and particles with cell-surface-hound phosphatases is advantageous for longer persistence of given population in a phosphate-scarce environment; although phosphatase-positive species cannot dominate the reservoir phytoplankton solely because of specific phosphorus-scavenging strategy.
Resumo:
Non-dispersive-infra-red (NDIR) sensors are believed to be one of the most selective and robust solutions for CO2 detection, though cost prohibits their broader integration. In this paper we propose a commercially viable silicon-on-insulator (SOI) complementary metal-oxide (CMOS) micro-electro-mechanical (MEMS) technology for an IR thermal emitter. For the first time, vertically aligned multi walled carbon nanotubes (VA-MWCNTs) are suggested as a possible coating for the enhancement of the emission intensity of the optical source of a NDIR system. VA-MWCNTs have been grown in situ by chemical vapour deposition (CVD) exclusively on the heater area. Optical microscopy, scanning electron microscopy and Raman spectroscopy have been used to verify the quality of the VA-MWCNTs growth. The CNT-coated emitter demonstrated an increased response to CO2 of approx. 60%. Furthermore, we show that the VA-MWCNTs are stable up to temperatures of 500°C for up to 100 hours. © 2013 IEEE.
Resumo:
Silver and bighead carps were cultured in large fish pens to reduce the risks of cyanobacterial bloom outbreaks in Meiliang Bay, Lake Tauhu in 2004 and 2005. Diet compositions and growth rates of the carps were studied from April to November each year. Both carp species fed mainly on zooplankton (> 50% in diet) in 2004 when competition was low, but selected more phytoplankton in 2005 when competition was high. Silver carp had a broader diet breadth than did bighead carp. Higher densities and fewer food resources increased diet breadths but decreased the diet overlap in both types of carps. It can be predicted that silver and bighead carps would be released from diet competition and shift to feed mainly on zooplankton at low densities, decreasing the efficiency of controlling cyanobacterial blooms. Conclusively, when silver and bighead carps are used to control cyanobacterial blooms, a sufficiently high stocking density is very important for a successful practice.
Resumo:
Physiological and biochemical responses of four fishes with different trophic levels to toxic cyanobacterial blooms were studied in a large net cage in Meiliang Bay, a hypereutrophic region of Lake Taihu. We sampled four fishes: the phytoplanktivorous Hypophthalmichthys molitrix and Aristichthys nobilis, the omnivorous Carassius auratus, and the carnivorous Culter ilishaeformis. Alterations of the antioxidant (GSH) and the major antioxidant enzymes (CAT, SOD, GPx, GST) in livers were monitored monthly, and the ultrastructures of livers were compared between the bloom and post-bloom periods. During the cyanobacterial blooms, the phytoplanktivorous fishes displayed only slight ultrastructural changes in liver, while the carnivorous fish presented the most serious injury as swollen endomembrane system and morphologically altered nuclei in hepatocytes. Biochemically, the phytoplanktivorous fishes possessed higher basal GSH concentrations and better correlations between the major antioxidant enzymes in liver, which might be responsible for their powerful resistance to MCs. This article provided physiological and toxicological evidences for the possible succession of fish communities following occurrence of toxic cyanobacterial blooms and also for the applicability of using phytoplanktivorous fish to counteract toxic cyanobacterial blooms in natural waters. (C) 2007 Elsevier Ltd. All rights reserved.