1000 resultados para Reinforced Soil


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-lapse geophysical data acquired during transient hydrological experiments are being increasingly employed to estimate subsurface hydraulic properties at the field scale. In particular, crosshole ground-penetrating radar (GPR) data, collected while water infiltrates into the subsurface either by natural or artificial means, have been demonstrated in a number of studies to contain valuable information concerning the hydraulic properties of the unsaturated zone. Previous work in this domain has considered a variety of infiltration conditions and different amounts of time-lapse GPR data in the estimation procedure. However, the particular benefits and drawbacks of these different strategies as well as the impact of a variety of key and common assumptions remain unclear. Using a Bayesian Markov-chain-Monte-Carlo stochastic inversion methodology, we examine in this paper the information content of time-lapse zero-offset-profile (ZOP) GPR traveltime data, collected under three different infiltration conditions, for the estimation of van Genuchten-Mualem (VGM) parameters in a layered subsurface medium. Specifically, we systematically analyze synthetic and field GPR data acquired under natural loading and two rates of forced infiltration, and we consider the value of incorporating different amounts of time-lapse measurements into the estimation procedure. Our results confirm that, for all infiltration scenarios considered, the ZOP GPR traveltime data contain important information about subsurface hydraulic properties as a function of depth, with forced infiltration offering the greatest potential for VGM parameter refinement because of the higher stressing of the hydrological system. Considering greater amounts of time-lapse data in the inversion procedure is also found to help refine VGM parameter estimates. Quite importantly, however, inconsistencies observed in the field results point to the strong possibility that posterior uncertainties are being influenced by model structural errors, which in turn underlines the fundamental importance of a systematic analysis of such errors in future related studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The top soil of a 14.5 km(2) region at la Chaux-de-Fonds in the Swiss Jura is exceptionally rich in cadmium. It contains an average of 1.3 mg per kg of soil. The spatial distribution of the metal has no simple pattern that could be explained by atmospheric deposition or agricultural practices. Thin soil contained most of its Cd at the surface; in thicker soil Cd is mainly concentrated between 60 and 80 cm depth. No specific minerals or soil fractions could account for these accumulation, and the vertical distribution of Cd is best explained by leaching from the topsoil and further adsorption within layers of nearly neutral pH. The local Jurassic sedimentary rocks contained too little Cd to account for the Cd concentrations in the soil. Alpine gravels from glacial till were too sparse in soils to explain such a spreading of Cd. Moreover this origin is contradictory with the fact that Cd is concentrated in the sand fraction of soils. The respective distributions of Fe and Cd in soils, and soil fractions, suggested that the spreading of iron nodules accumulated during the siderolithic period (Eocene) was not the main source of Cd. Atmospheric deposition, and spreading of fertiliser or waste from septic tanks seem the only plausible explanation for the Cd concentrations, but at present few factors allow us to differentiate between them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, acoustic isolation is one of the problems raised with building construction in Spain. The publication of the Basic Document for the protection against noise of the Technical Building Code has increased the demand of comfort for citizens. This has created the need to seek new composite materials that meet the new required acoustical building codes. In this paper we report the results of the newly developed composites that are able to improve the acoustic isolation of airborne noise. These composites were prepared from polypropylene (PP) reinforced with mechanical pulp fibers from softwood (Pinus radiata). Mechanical and acoustical properties of the composites from mechanical pulp (MP) and polypropylene (PP) have been investigated and compared to fiberglass (FG) composites. MP composites had lower tensile properties compared with FG composites, although these properties can be improved by incorporation of a coupling agent. The results of acoustical properties of MP composites were reported and compared with the conventional composites based on fiberglass and gypsum plasterboards. Finally, we suggest the application of MP composites as a light-weight building material to reduce acoustic transmitions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two of the drawbacks of using natural-based composites in industrial applications are thermal instability and water uptake capacity. In this work, mechanical wood pulp was used to reinforce polypropylene at a level of 20 to 50 wt. %. Composites were mixed by means of a Brabender internal mixer for both non-coupled and coupled formulations. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to determine the thermal properties of the composites. The water uptake behavior was evaluated by immersion of the composites in water until an equilibrium state was reached. Results of water absorption tests revealed that the amount of water absorption was clearly dependent upon the fiber content. The coupled composites showed lower water absorption compared to the uncoupled composites. The incorporation of mechanical wood pulp into the polypropylene matrix produced a clear nucleating effect by increasing the crystallinity degree of the polymer and also increasing the temperature of polymer degradation. The maximum degradation temperature for stone ground wood pulp–reinforced composites was in the range of 330 to 345 ºC

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of stone groundwood / polypropylene injection-molded composites was evaluated with and without coupling agent. Stone groundwood (SGW) is a fibrous material commonly prepared in a high yield process and mainly used for papermaking applications. In this work, the use of SGW fibers was explored as a reinforcing element of polypropylene (PP) composites. The surface charge density of the composite components was evaluated, as well as the fiber’s length and diameter inside the composite material. Two mixing extrusion processes were evaluated, and the use of a kinetic mixer, instead of an internal mixer, resulted in longer mean fiber lengths of the reinforcing fibers. On the other hand, the accessibility of surface hydroxyl groups of stone groundwood fibers was improved by treating the fibers with 5% of sodium hydroxide, resulting in a noticeable increase of the tensile strength of the composites, for a similar percentage of coupling agent. A new parameter called Fiber Tensile Strength Factor is defined and used as a baseline for the comparison of the properties of the different composite materials. Finally the competitiveness of stone groundwood / polypropylene / polypropylene-co-maleic anhydride system, which compared favorably to sized glass-fiber / polypropylene GF/PP and glass-fiber / polypropylene / polypropylene-co-maleic anhydride composite formulations, was quantified by means of the fiber tensile strength factor

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants influence the behavior of and modify community composition of soil-dwelling organisms through the exudation of organic molecules. Given the chemical complexity of the soil matrix, soil-dwelling organisms have evolved the ability to detect and respond to these cues for successful foraging. A key question is how specific these responses are and how they may evolve. Here, we review and discuss the ecology and evolution of chemotaxis of soil nematodes. Soil nematodes are a group of diverse functional and taxonomic types, which may reveal a variety of responses. We predicted that nematodes of different feeding guilds use host-specific cues for chemotaxis. However, the examination of a comprehensive nematode phylogeny revealed that distantly related nematodes, and nematodes from different feeding guilds, can exploit the same signals for positive orientation. Carbon dioxide (CO(2)), which is ubiquitous in soil and indicates biological activity, is widely used as such a cue. The use of the same signals by a variety of species and species groups suggests that parts of the chemo-sensory machinery have remained highly conserved during the radiation of nematodes. However, besides CO(2), many other chemical compounds, belonging to different chemical classes, have been shown to induce chemotaxis in nematodes. Plants surrounded by a complex nematode community, including beneficial entomopathogenic nematodes, plant-parasitic nematodes, as well as microbial feeders, are thus under diffuse selection for producing specific molecules in the rhizosphere that maximize their fitness. However, it is largely unknown how selection may operate and how belowground signaling may evolve. Given the paucity of data for certain groups of nematodes, future work is needed to better understand the evolutionary mechanisms of communication between plant roots and soil biota.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cultivation-independent approach based on polymerase chain reaction (PCR)-amplified partial small subunit rRNA genes was used to characterize bacterial populations in the surface soil of a commercial pear orchard consisting of different pear cultivars during two consecutive growing seasons. Pyrus communis L. cvs Blanquilla, Conference, and Williams are among the most widely cultivated cultivars in Europe and account for the majority of pear production in Northeastern Spain. To assess the heterogeneity of the community structure in response to environmental variables and tree phenology, bacterial populations were examined using PCR-denaturing gradient gel electrophoresis (DGGE) followed by cluster analysis of the 16S ribosomal DNA profiles by means of the unweighted pair group method with arithmetic means. Similarity analysis of the band patterns failed to identify characteristic fingerprints associated with the pear cultivars. Both environmentally and biologically based principal-component analyses showed that the microbial communities changed significantly throughout the year depending on temperature and, to a lesser extent, on tree phenology and rainfall. Prominent DGGE bands were excised and sequenced to gain insight into the identities of the predominant bacterial populations. Most DGGE band sequences were related to bacterial phyla, such as Bacteroidetes, Cyanobacteria, Acidobacteria, Proteobacteria, Nitrospirae, and Gemmatimonadetes, previously associated with typical agronomic crop environments

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report produced by Iowa Departmment of Agriculture and Land Stewardship

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report of Conservation Program Summary produced by Iowa Departmment of Agriculture and Land Stewardship

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report produced by Iowa Departmment of Agriculture and Land Stewardship

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report produced by Iowa Departmment of Agriculture and Land Stewardship

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent research, both soil (root-zone) and air temperature have been used as predictors for the treeline position worldwide. In this study, we intended to (a) test the proposed temperature limitation at the treeline, and (b) investigate effects of season length for both heat sum and mean temperature variables in the Swiss Alps. As soil temperature data are available for a limited number of sites only, we developed an air-to-soil transfer model (ASTRAMO). The air-to-soil transfer model predicts daily mean root-zone temperatures (10cm below the surface) at the treeline exclusively from daily mean air temperatures. The model using calibrated air and root-zone temperature measurements at nine treeline sites in the Swiss Alps incorporates time lags to account for the damping effect between air and soil temperatures as well as the temporal autocorrelations typical for such chronological data sets. Based on the measured and modeled root-zone temperatures we analyzed. the suitability of the thermal treeline indicators seasonal mean and degree-days to describe the Alpine treeline position. The root-zone indicators were then compared to the respective indicators based on measured air temperatures, with all indicators calculated for two different indicator period lengths. For both temperature types (root-zone and air) and both indicator periods, seasonal mean temperature was the indicator with the lowest variation across all treeline sites. The resulting indicator values were 7.0 degrees C +/- 0.4 SD (short indicator period), respectively 7.1 degrees C +/- 0.5 SD (long indicator period) for root-zone temperature, and 8.0 degrees C +/- 0.6 SD (short indicator period), respectively 8.8 degrees C +/- 0.8 SD (long indicator period) for air temperature. Generally, a higher variation was found for all air based treeline indicators when compared to the root-zone temperature indicators. Despite this, we showed that treeline indicators calculated from both air and root-zone temperatures can be used to describe the Alpine treeline position.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxalate catabolism, which can have both medical and environmental implications, is performed by phylogenetically diverse bacteria. The formyl-CoA-transferase gene was chosen as a molecular marker of the oxalotrophic function. Degenerated primers were deduced from an alignment of frc gene sequences available in databases. The specificity of primers was tested on a variety of frc-containing and frc-lacking bacteria. The frc-primers were then used to develop PCR-DGGE and real-time SybrGreen PCR assays in soils containing various amounts of oxalate. Some PCR products from pure cultures and from soil samples were cloned and sequenced. Data were used to generate a phylogenetic tree showing that environmental PCR products belonged to the target physiological group. The extent of diversity visualised on DGGE pattern was higher for soil samples containing carbonate resulting from oxalate catabolism. Moreover, the amount of frc gene copies in the investigated soils was detected in the range of 1.64x10(7) to 1.75x10(8)/g of dry soil under oxalogenic tree (representing 0.5 to 1.2% of total 16S rRNA gene copies), whereas the number of frc gene copies in the reference soil was 6.4x10(6) (or 0.2% of 16S rRNA gene copies). This indicates that oxalotrophic bacteria are numerous and widespread in soils and that a relationship exists between the presence of the oxalogenic trees Milicia excelsa and Afzelia africana and the relative abundance of oxalotrophic guilds in the total bacterial communities. This is obviously related to the accomplishment of the oxalate-carbonate pathway, which explains the alkalinization and calcium carbonate accumulation occurring below these trees in an otherwise acidic soil. The molecular tools developed in this study will allow in-depth understanding of the functional implication of these bacteria on carbonate accumulation as a way of atmospheric CO(2) sequestration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber reinforced polymer (FRP) composite materials are making an entry into the construction market in both buildings and pavements. The application to pavements so far has come in the form of joint reinforcement (dowels and tie bars). FRP resistance to salt corrosion in dowels has made it an alternative to standard epoxy-coated steel dowels for pavements. Iowa State University has completed a large amount of laboratory research to determine the diameter, spacing, and durability of FRP dowels. This report documents the performance of elliptical FRP dowels installed in a field situation. Ten joints were monitored in three consecutive test sections, for each of three dowel spacings (10, 12, and 15 inches) including one instrumented dowel in each test section. The modulus of dowel bar support was determined using falling weight deflectometer (FWD) testing and a loaded crawl truck. FWD testing was also used to determine load transfer efficiency across the joint. The long-term performance and durability of the concrete was also evaluated by monitoring faulting and joint opening measurements and performing visual distress surveys at each joint. This report also contains similar information for standard round, medium elliptical, and heavy elliptical steel dowels in a portion of the same highway. In addition, this report provides a summary of theoretical analysis used to evaluate joint differential deflection for the dowels.