982 resultados para Reflectance Spectroscopy
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Aquafeed production faces global issues related to availability of feed ingredients. Feed manufacturers require greater flexibility in order to develop nutritional and cost-effective formulations that take into account nutrient content and availability of ingredients. The search for appropriate ingredients requires detailed screening of their potential nutritional value and variability at the industrial level. In vitro digestion of feedstuffs by enzymes extracted from the target species has been correlated with apparent protein digestibility (APD) in fish and shrimp species. The present study verified the relationship between APD and in vitro degree of protein hydrolysis (DH) with Litopenaeus vannamei hepatopancreas enzymes in several different ingredients (n = 26): blood meals, casein, corn gluten meal, crab meal, distiller`s dried grains with solubles, feather meal, fish meals, gelatin, krill meals, poultry by-product meal, soybean meals, squid meals and wheat gluten. The relationship between APD and DH was further verified in diets formulated with these ingredients at 30% inclusion into a reference diet. APD was determined in vivo (30.1 +/- 0.5 degrees C, 32.2 +/- 0.4%.) with juvenile L vannamei (9 to 12 g) after placement of test ingredients into a reference diet (35 g kg(-1) CP: 8.03 g kg(-1) lipid; 2.01 kcal g(-1)) with chromic oxide as the inert marker. In vitro DH was assessed in ingredients and diets with standardized hepatopancreas enzymes extracted from pond-reared shrimp. The DH of ingredients was determined under different assay conditions to check for the most suitable in vitro protocol for APD prediction: different batches of enzyme extracts (HPf5 or HPf6), temperatures (25 or 30 degrees C) and enzyme activity (azocasein): crude protein ratios (4 U: 80 mg CP or 4 U: 40 mg CP). DH was not affected by ingredient proximate composition. APD was significantly correlated to DH in regressions considering either ingredients or diets. The relationships between APD and DH of the ingredients could be suitably adjusted to a Rational Function (y = (a + bx)/(1 + cx + dx2), n = 26. Best in vitro APD predictions were obtained at 25 degrees C, 4 U: 80 mg CP both for ingredients (R(2) = 0.86: P = 0.001) and test diets (R(2) = 0.96; P = 0.007). The regression model including all 26 ingredients generated higher prediction residuals (i.e., predicted APD - determined APD) for corn gluten meal, feather meal. poultry by-product meal and krill flour. The remaining test ingredients presented mean prediction residuals of 3.5 points. A model including only ingredients with APD>80% showed higher prediction precision (R(2) = 0.98: P = 0.000004; n = 20) with average residual of 1.8 points. Predictive models including only ingredients from the same origin (e.g., marine-based, R(2) = 0.98; P = 0.033) also displayed low residuals. Since in vitro techniques have been usually validated through regressions against in vivo APD, the DH predictive capacity may depend on the consistency of the in vivo methodology. Regressions between APD and DH suggested a close relationship between peptide bond breakage by hepatopancreas digestive proteases and the apparent nitrogen assimilation in shrimp, and this may be a useful tool to provide rapid nutritional information. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
[EN] New TiO2 catalysts have been synthesised by means of a sol–gel method in which aggregates have been selected before thermal treatment. Sieving and calcination temperature have been proved to be key factors in obtaining catalysts with greater photoactivity than that of Degussa P-25. These new catalysts have been characterized by means of transmission electron microscopy (TEM), BET surface area, diffuse reflectance spectroscopy (DRS), UV–vis spectroscopy, Fourier transformed infrared (FTIR) and X-ray diffraction (XRD). The different parameters studied were compared to those obtained from two commercial catalysts (Degussa P-25 and Hombikat-UV100). The photocatalytic efficiency of the new catalysts was evaluated by the degradation of various phenolic compounds using UV light (maximum around 365 nm, 9mW). The catalyst sieved and calcinated at 1023 K, ECT-1023t, showed phenol degradation rates 2.7 times higher than those of Degussa P-25. Also in the degradation of different phenolic compounds, this catalyst showed a higher activity than that of the commercial one. The high photoactivity of this new catalyst has been attributed to the different distribution of surface defects (determined from FTIR studies) and its increased capacity to yield H2O2
Resumo:
The future hydrogen demand is expected to increase, both in existing industries (including upgrading of fossil fuels or ammonia production) and in new technologies, like fuel cells. Nowadays, hydrogen is obtained predominantly by steam reforming of methane, but it is well known that hydrocarbon based routes result in environmental problems and besides the market is dependent on the availability of this finite resource which is suffering of rapid depletion. Therefore, alternative processes using renewable sources like wind, solar energy and biomass, are now being considered for the production of hydrogen. One of those alternative methods is the so-called “steam-iron process” which consists in the reduction of a metal-oxide by hydrogen-containing feedstock, like ethanol for instance, and then the reduced material is reoxidized with water to produce “clean” hydrogen (water splitting). This kind of thermochemical cycles have been studied before but currently some important facts like the development of more active catalysts, the flexibility of the feedstock (including renewable bio-alcohols) and the fact that the purification of hydrogen could be avoided, have significantly increased the interest for this research topic. With the aim of increasing the understanding of the reactions that govern the steam-iron route to produce hydrogen, it is necessary to go into the molecular level. Spectroscopic methods are an important tool to extract information that could help in the development of more efficient materials and processes. In this research, ethanol was chosen as a reducing fuel and the main goal was to study its interaction with different catalysts having similar structure (spinels), to make a correlation with the composition and the mechanism of the anaerobic oxidation of the ethanol which is the first step of the steam-iron cycle. To accomplish this, diffuse reflectance spectroscopy (DRIFTS) was used to study the surface composition of the catalysts during the adsorption of ethanol and its transformation during the temperature program. Furthermore, mass spectrometry was used to monitor the desorbed products. The set of studied materials include Cu, Co and Ni ferrites which were also characterized by means of X-ray diffraction, surface area measurements, Raman spectroscopy, and temperature programmed reduction.
Resumo:
The work investigates the feasibility of a new process aimed at the production of hydrogen with inherent separation of carbon oxides. The process consists in a cycle in which, in the first step, a mixed metal oxide is reduced by ethanol (obtained from biomasses). The reduced metal is then contacted with steam in order to split the water and sequestrating the oxygen into the looping material’s structure. The oxides used to run this thermochemical cycle, also called “steam-iron process” are mixed ferrites in the spinel structure MeFe2O4 (Me = Fe, Co, Ni or Cu). To understand the reactions involved in the anaerobic reforming of ethanol, diffuse reflectance spectroscopy (DRIFTS) was used, coupled with the mass analysis of the effluent, to study the surface composition of the ferrites during the adsorption of ethanol and its transformations during the temperature program. This study was paired with the tests on a laboratory scale plant and the characterization through various techniques such as XRD, Mössbauer spectroscopy, elemental analysis... on the materials as synthesized and at different reduction degrees In the first step it was found that besides the generation of the expected CO, CO2 and H2O, the products of ethanol anaerobic oxidation, also a large amount of H2 and coke were produced. The latter is highly undesired, since it affects the second step, during which water is fed over the pre-reduced spinel at high temperature. The behavior of the different spinels was affected by the nature of the divalent metal cation; magnetite was the oxide showing the slower rate of reduction by ethanol, but on the other hand it was that one which could perform the entire cycle of the process more efficiently. Still the problem of coke formation remains the greater challenge to solve.
Resumo:
High-resolution reconstructions of climate variability that cover the past millennia are necessary to improve the understanding of natural and anthropogenic climate change across the globe. Although numerous records are available for the mid- and high-latitudes of the Northern Hemisphere, global assessments are still compromised by the scarcity of data from the Southern Hemisphere. This is particularly the case for the tropical and subtropical areas. In addition, high elevation sites in the South American Andes may provide insight into the vertical structure of climate change in the mid-troposphere. This study presents a 3000 yr-long austral summer (November to February) temperature reconstruction derived from the 210Pb- and 14C-dated organic sediments of Laguna Chepical (32°16' S, 70°30' W, 3050 m a.s.l.), a high-elevation glacial lake in the subtropical Andes of central Chile. Scanning reflectance spectroscopy in the visible light range provided the spectral index R570/R630, which reflects the clay mineral content in lake sediments. For the calibration period (AD 1901–2006), the R570/R630 data were regressed against monthly meteorological reanalysis data, showing that this proxy was strongly and significantly correlated with mean summer (NDJF) temperatures (R3 yr = −0.63, padj = 0.01). This calibration model was used to make a quantitative temperature reconstruction back to 1000 BC. The reconstruction (with a model error RMSEPboot of 0.33 °C) shows that the warmest decades of the past 3000 yr occurred during the calibration period. The 19th century (end of the Little Ice Age (LIA)) was cool. The prominent warmth reconstructed for the 18th century, which was also observed in other records from this area, seems systematic for subtropical and southern South America but remains difficult to explain. Except for this warm period, the LIA was generally characterized by cool summers. Back to AD 1400, the results from this study compare remarkably well to low altitude records from the Chilean Central Valley and southern South America. However, the reconstruction from Laguna Chepical does not show a warm Medieval Climate Anomaly during the 12–13th century, which is consistent with records from tropical South America. The Chepical record also indicates substantial cooling prior to 800 BC. This coincides with well-known regional as well as global glacier advances which have been attributed to a grand solar minimum. This study thus provides insight into the climatic drivers and temperature patterns in a region for which currently very few data are available. It also shows that since ca. AD 1400, long-term temperature patterns were generally similar at low and high altitudes in central Chile.
Resumo:
A lack of quantitative high resolution paleoclimate data from the Southern Hemisphere limits the ability to examine current trends within the context of long-term natural climate variability. This study presents a temperature reconstruction for southern Tasmania based on analyses of a sediment core from Duckhole Lake (43.365°S, 146.875°E). The relationship between non-destructive whole core scanning reflectance spectroscopy measurements in the visible spectrum (380–730 nm) and the instrumental temperature record (ad 1911–2000) was used to develop a calibration-in-time reflectance spectroscopy-based temperature model. Results showed that a trough in reflectance from 650 to 700 nm, which represents chlorophyll and its derivatives, was significantly correlated to annual mean temperature. A calibration model was developed (R = 0.56, p auto < 0.05, root mean squared error of prediction (RMSEP) = 0.21°C, five-year filtered data, calibration period 1911–2000) and applied down-core to reconstruct annual mean temperatures in southern Tasmania over the last c. 950 years. This indicated that temperatures were initially cool c. ad 1050, but steadily increased until the late ad 1100s. After a brief cool period in the ad 1200s, temperatures again increased. Temperatures steadily decreased during the ad 1600s and remained relatively stable until the start of the 20th century when they rapidly decreased, before increasing from ad 1960s onwards. Comparisons with high resolution temperature records from western Tasmania, New Zealand and South America revealed some similarities, but also highlighted differences in temperature variability across the mid-latitudes of the Southern Hemisphere. These are likely due to a combination of factors including the spatial variability in climate between and within regions, and differences between records that document seasonal (i.e. warm season/late summer) versus annual temperature variability. This highlights the need for further records from the mid-latitudes of the Southern Hemisphere in order to constrain past natural spatial and seasonal/annual temperature variability in the region, and to accurately identify and attribute changes to natural variability and/or anthropogenic activities.
Resumo:
Treelines are expected to rise to higher elevations with climate warming; the rate and extent however are still largely unknown. Here we present the first multi-proxy palaeoecological study from the treeline in the Northwestern Swiss Alps that covers the entire Holocene. We reconstructed climate, fire and vegetation dynamics at Iffigsee, an alpine lake at 2,065 m a.s.l., by using seismic sedimentary surveys, loss on ignition, visible spectrum reflectance spectroscopy, pollen, spore, macrofossil and charcoal analyses. Afforestation with Larix decidua and tree Betula (probably B. pendula) started at ~9,800 cal. b.p., more than 1,000 years later than at similar elevations in the Central and Southern Alps, indicating cooler temperatures and/or a high seasonality. Highest biomass production and forest position of ~2,100–2,300 m a.s.l. are inferred during the Holocene Thermal Maximum from 7,000 to 5,000 cal. b.p. With the onset of pastoralism and transhumance at 6,800–6,500 cal. b.p., human impact became an important factor in the vegetation dynamics at Iffigsee. This early evidence of pastoralism is documented by the presence of grazing indicators (pollen, spores), as well as a wealth of archaeological finds at the nearby mountain pass of Schnidejoch. Human and fire impact during the Neolithic and Bronze Ages led to the establishment of pastures and facilitated the expansion of Picea abies and Alnus viridis. We expect that in mountain areas with land abandonment, the treeline will react quickly to future climate warming by shifting to higher elevations, causing drastic changes in species distribution and composition as well as severe biodiversity losses.
Resumo:
Varved lake sediments are excellent natural archives providing quantitative insights into climatic and environmental changes at very high resolution and chronological accuracy. However, due to the multitude of responses within lake ecosystems it is often difficult to understand how climate variability interacts with other environmental pressures such as eutrophication, and to attribute observed changes to specific causes. This is particularly challenging during the past 100 years when multiple strong trends are superposed. Here we present a high-resolution multi-proxy record of sedimentary pigments and other biogeochemical data from the varved sediments of Lake Żabińskie (Masurian Lake District, north-eastern Poland, 54°N–22°E, 120 m a.s.l.) spanning AD 1907 to 2008. Lake Żabińskie exhibits biogeochemical varves with highly organic late summer and winter layers separated by white layers of endogenous calcite precipitated in early summer. The aim of our study is to investigate whether climate-driven changes and anthropogenic changes can be separated in a multi-proxy sediment data set, and to explore which sediment proxies are potentially suitable for long quantitative climate reconstructions. We also test if convoluted analytical techniques (e.g. HPLC) can be substituted by rapid scanning techniques (visible reflectance spectroscopy VIS-RS; 380–730 nm). We used principal component analysis and cluster analysis to show that the recent eutrophication of Lake Żabińskie can be discriminated from climate-driven changes for the period AD 1907–2008. The eutrophication signal (PC1 = 46.4%; TOC, TN, TS, Phe-b, high TC/CD ratios total carotenoids/chlorophyll-a derivatives) is mainly expressed as increasing aquatic primary production, increasing hypolimnetic anoxia and a change in the algal community from green algae to blue-green algae. The proxies diagnostic for eutrophication show a smooth positive trend between 1907 and ca 1980 followed by a very rapid increase from ca. 1980 ± 2 onwards. We demonstrate that PC2 (24.4%, Chl-a-related pigments) is not affected by the eutrophication signal, but instead is sensitive to spring (MAM) temperature (r = 0.63, pcorr < 0.05, RMSEP = 0.56 °C; 5-yr filtered). Limnological monitoring data (2011–2013) support this finding. We also demonstrate that scanning visible reflectance spectroscopy (VIS-RS) data can be calibrated to HPLC-measured chloropigment data and be used to infer concentrations of sedimentary Chl-a derivatives {pheophytin a + pyropheophytin a}. This offers the possibility for very high-resolution (multi)millennial-long paleoenvironmental reconstructions.
Resumo:
During Ocean Drilling Program Leg 199 in the equatorial Pacific, visible and near-infrared spectroscopy (VNIS) was used to measure the reflectance spectra (350-2500 nm) of 1343 sediment samples. Reflectance spectra were also measured for a suite of 60 samples of known mineralogy, thereby providing a local ground-truth calibration of spectral features to percentages of calcite, opal, smectite, and illite. The associated algorithm was used to calculate mineral percentages from the 1343 spectra. Using multiple regression and VNIS mineralogy, multisensor track physical properties and light spectroscopy data were then converted into continuous high-resolution mineralogy logs.
Resumo:
Mealiness is a textural attribute related to an internal fruit disorder that involves quality loss. It is characterised by the combination of abnormal softness of the fruit and absence of free juiciness in the mouth when eaten by the consumer. Recent research concluded with the development of precise instrumental procedure to measure a scale of mealiness based on the combination of several rheological properties and empirical magnitudes. In this line, time-domain laser reflectance spectroscopy (TDRS) is a medical technology, new in agrofood research, which is capable of obtaining physical and chemical information independently and simultaneously, and this can be of interest to characterise mealiness. Using VIS & NIR lasers as light sources, TDRS was applied in this work to Golden Delicious and Cox apples (n=90), conforming several batches of untreated samples and storage-treated (20°C & 95%RH) to promote the development of mealiness. The collected database was clustered into different groups according to their instrumental test values (Barreiro et al, 1998). The optical coefficients were used as explanatory variables when building discriminant analysis functions for mealiness, achieving a classification score above 80% of correctly identified mealy versus fresh apples.