965 resultados para Recombinant congenic strains
Resumo:
Introduction The biological diversity of Trypanosoma cruzi strains plays an important role in the clinical and epidemiological features of Chagas disease. Methods Eight T. cruzi strains isolated from children living in a Chagas disease vector-controlled area of Jequitinhonha Valley, State of Minas Gerais, Brazil, were genetically and biologically characterized. Results The characterizations demonstrated that all of the strains belonged to T. cruzi II, and showed high infectivity and a variable mean maximum peak of parasitemia. Six strains displayed low parasitemia, and two displayed moderate parasitemia. Later peaks of parasitemia and a predominance of intermediate and large trypomastigotes in all T. cruzi strains were observed. The mean pre-patent period was relatively short (4.2±0.25 to 13.7±3.08 days), whereas the patent period ranged from 3.3±1.08 to 34.5±3.52 days. Mortality was observed only in animals infected with strain 806 (62.5%). Histopathological analysis of the heart showed that strains 501 and 806 caused inflammation, but fibrosis was observed only in animals infected with strain 806. Conclusions The results indicate the presence of an association between the biological behavior in mice and the genetic characteristics of the parasites. The study also confirmed general data from Brazil where T. cruzi II lineage is the most prevalent in the domiciliary cycle and generally has low virulence, with some strains capable of inducing inflammatory processes and fibrosis.
Resumo:
Introduction: We evaluated the in vitro antimalarial activity of tigecycline as an alternative drug for the treatment of severe malaria. Methods: A chloroquine-sensitive Plasmodium falciparum reference strain, a chloroquine-resistant reference strain, and three clinical isolates were tested for in vitro susceptibility to tigecycline. A histidine-rich protein in vitro assay was used to evaluate antimalarial activity. Results: The geometric-mean 50% effective concentration (EC50%) of tigecycline was 535.5 nM (confidence interval (CI): 344.3-726.8). No significant correlation was found between the EC50% of tigecycline and that of any other tested antimalarial drug. Conclusions: Tigecycline may represent an alternative drug for the treatment of patients with severe malaria.
Resumo:
Introduction. The genera Enterococcus, Staphylococcus and Streptococcus are recognized as important Gram-positive human pathogens. The aim of this study was to evaluate the performance of Vitek 2 in identifying Gram-positive cocci and their antimicrobial susceptibilities. Methods. One hundred four isolates were analyzed to determine the accuracy of the automated system for identifying the bacteria and their susceptibility to oxacillin and vancomycin. Results. The system correctly identified 77.9% and 97.1% of the isolates at the species and genus levels, respectively. Additionally, 81.8% of the Vitek 2 results agreed with the known antimicrobial susceptibility profiles. Conclusion. Vitek 2 correctly identified the commonly isolated strains; however, the limitations of the method may lead to ambiguous findings.
Resumo:
INTRODUCTION: Various methods are used for the diagnosis of visceral leishmaniasis (VL), such as microscopic examination, culture and inoculation of laboratory animals; however, serological assays are commonly used for the detection of antibodies in serum samples with a wide range of specificity and sensitivity. METHODS: The purpose of this study was to compare three serological methods, including rA2-ELISA, the recombinant KE16 (rKE16) dipstick test and the direct agglutination test (DAT), for the detection of antibodies against VL antigens. The assays utilized 350 statistically based random serum samples from domestic dogs with clinical symptoms as well as samples from asymptomatic and healthy dogs from rural and urban areas of the Meshkinshahr district, northwestern Iran. RESULTS: Samples were assessed, and the following positive rates were obtained: 11.5% by rKE16, 26.9% by DAT and 49.8% by ELISA. The sensitivity among symptomatic dogs was 32.4% with rKE16, 100% with DAT and 52.9% with ELISA. Conversely, rA2-ELISA was less specific for asymptomatic dogs, at 46.5%, compared with DAT, at 88.9%. CONCLUSIONS : This study recommends rA2-ELISA as a parallel assay combined with DAT to detect VL infection among dogs. Further evaluations should be performed to develop an inexpensive and reliable serologic test for the detection of Leishmania infantum among infected dogs.
Resumo:
INTRODUCTION: Acquired production of metallo-β-lactamases is an important mechanism of resistance in Pseudomonas aeruginosa. The objective of this study was to investigate the production of metallo-β-lactamase and the genetic diversity among ceftazidime-resistant P. aeruginosa isolates from State of Sergipe, Brazil. METHODS: Metallo-β-lactamase was investigated using the disk approximation test and polymerase chain reaction (PCR). Genetic diversity was evaluated by pulsed-field gel electrophoresis (PFGE). RESULTS: A total of 48 (51.6%) isolates were resistant to ceftazidime. Six (12.2%) of these were positive for metallo-β-lactamase production. Only two (4.1%) of the ceftazidime-resistant isolates carried the bla SPM-1 gene. CONCLUSIONS: Production of metallo-β-lactamases was not the main mechanism of resistance to ceftazidime and carbapenems among P. aeruginosa strains in Sergipe, Brazil.
Resumo:
INTRODUCTION: Antibiotic resistance is the main factor that affects the efficacy of current therapeutic regimens against Helicobacter pylori. This study aimed to determine the rates of resistance to efficacy clarithromycin, amoxicillin, tetracycline, levofloxacin and metronidazole among H. pylori strains isolated from Turkish patients with dyspepsia. METHODS: H. pylori was cultured from corpus and antrum biopsies that were collected from patients with dyspeptic symptoms, and the antimicrobial susceptibility of H. pylori was determined using the E-test (clarithromycin, amoxicillin, tetracycline, metronidazole and levofloxacin) according to the EUCAST breakpoints. Point mutations in the 23S rRNA gene of clarithromycin-resistant strains were investigated using real-time PCR. RESULTS: A total of 98 H. pylori strains were isolated, all of which were susceptible to amoxicillin and tetracycline. Of these strains, 36.7% (36/98) were resistant to clarithromycin, 35.5% (34/98) were resistant to metronidazole, and 29.5% (29/98) were resistant to levofloxacin. Multiple resistance was detected in 19.3% of the isolates. The A2143G and A2144G point mutations in the 23S rRNA-encoding gene were found in all 36 (100%) of the clarithromycin-resistant strains. Additionally, the levofloxacin MIC values increased to 32 mg/L in our H. pylori strains. Finally, among the clarithromycin-resistant strains, 27.2% were resistant to levofloxacin, and 45.4% were resistant to metronidazole. CONCLUSIONS: We conclude that treatment failure after clarithromycin- or levofloxacin-based triple therapy is not surprising and that metronidazole is not a reliable agent for the eradication of H. pylori infection in Turkey.
Resumo:
AbstractINTRODUCTION: This study evaluated whether different strains of Brevibacillus laterosporus could be used to control larvae of the blowfly Chrysomya megacephala , a pest that affects both human and animal health.METHODS:Mortality rates were recorded after 1-mL suspensions of sporulated cells of 14 different strains of B. laterosporus were added to 2.5g of premixed diet consisting of rotting ground beef fed to first instar larvae of C. megacephala . All bioassays were performed using 10 larvae per strain, with a minimum of three replicates for each bioassay. Larval mortality was recorded daily up to seven days.RESULTS:Strains Bon 707, IGM 16-92, and Shi 3 showed the highest toxicity toward the larvae producing 70.5%, 64.5%, and 51.6% of larval mortality, respectively, which was significantly higher than that in the control group (p < 0.05). In contrast, strains NRS 1642, NRS 661, NRS 590 BL 856, NRS 342, ATCC 6457, Bon 712, and NRS 1247 showed limited or no pathogenic activity against the target larvae.CONCLUSIONS:Our preliminary data indicated that B. laterosporus could be used to develop bioinsecticides against C. megacephala .
Resumo:
Abstract INTRODUCTION: The aim of this study was to determine whether an herbal extract containing monoterpene exhibited activity against multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa isolated from clinical infection samples. METHODS: The essential oil of Trachyspermum ammi (L.) Sprague ex Turrill (Apiaceae) fruit was extracted by hydrodistillation. Fruit residues were treated with hydrochloric acid and re-hydrodistilled to obtain volatile compounds. Compounds in the distilled oil were identified using gas-chromatography (GC) and GC-mass spectrometry (MS). The antibiotic susceptibility of all bacterial isolates was analyzed using both the disc diffusion method and determination of the minimum inhibitory concentration (MIC). The sensitivity of antibiotic-resistant isolates to essential oil was also determined by using the disc diffusion method and MIC determination. RESULTS: Of 26 clinical isolates, 92% were multidrug-resistant (MDR). Aromatic monoterpenes (thymol, paracymene, and gamma-terpinene) were the major (90%) components of the oil. Growth of S. aureus strains was successfully inhibited by the oil, with an inhibitory zone diameter (IZD) between 30-60mm and MIC <0.02μL/mL. The oil had no antimicrobial activity against clinical isolates of P. aeruginosa; rather, it prevented pigment production in these isolates. CONCLUSIONS: This study revealed that the essential oil of Trachyspermum ammi, which contains monoterpene, has good antibacterial potency. Monoterpenes could thus be incorporated into antimicrobial ointment formulas in order to treat highly drug-resistant S. aureus infections. Our findings also underscore the utility of research on natural products in order to combat bacterial multidrug resistance.
Resumo:
The use of chemical analysis of microbial components, including proteins, became an important achievement in the 80’s of the last century to the microbial identification. This led a more objective microbial identification scheme, called chemotaxonomy, and the analytical tools used in the field are mainly 1D/2D gel electrophoresis, spectrophotometry, high-performance liquid chromatography, gas chromatography, and combined gas chromatography-mass spectrometry. The Edman degradation reaction was also applied to peptides sequence giving important insights to the microbial identification. The rapid development of these techniques, in association with knowledge generated by DNA sequencing and phylogeny based on rRNA gene and housekeeping genes sequences, boosted the microbial identification to an unparalleled scale. The recent results of mass spectrometry (MS), like Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight (MALDI-TOF), for rapid and reliable microbial identification showed considerable promise. In addition, the technique is rapid, reliable and inexpensive in terms of labour and consumables when compared with other biological techniques. At present, MALDI-TOF MS adds an additional step for polyphasic identification which is essential when there is a paucity of characters or high DNA homologies for delimiting very close related species. The full impact of this approach is now being appreciated when more diverse species are studied in detail and successfully identified. However, even with the best polyphasic system, identification of some taxa remains time-consuming and determining what represents a species remains subjective. The possibilities opened with new and even more robust mass spectrometers combined with sound and reliable databases allow not only the microbial identification based on the proteome fingerprinting but also include de novo specific proteins sequencing as additional step. These approaches are pushing the boundaries in the microbial identification field.
Resumo:
Brazil is one the largest producers and exporters of food commodities in the world. The evaluation of fungi capable of spoilage and the production mycotoxins in these commodities is an important issue that can be of help in bioeconomic development. The present work aimed to identify fungi of the genus Aspergillus section Flavi isolated from different food commodities in Brazil. Thirty-five fungal isolates belonging to the section Flavi were identified and characterised. Different classic phenotypic and genotypic methodologies were used, as well as a novel approach based on proteomic profiles produced by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Type or reference strains for each taxonomic group were included in this study. Three isolates that presented discordant identification patterns were further analysed using the internal transcribed spacer (ITS) region and calmodulin gene sequences. The data obtained from the phenotypic and spectral analyses divide the isolates into three groups, corresponding to taxa closely related to Aspergillus flavus, Aspergillus parasiticus, and Aspergillus tamarii. Final polyphasic fungal identification was achieved by joining data from molecular analyses, classical morphology, and biochemical and proteomic profiles generated by MALDI-TOF MS.
Resumo:
Tese de Doutoramento em Biologia Ambiental e Molecular