898 resultados para Rear wing
Resumo:
Unequal sex ratios lead to the loss of genetic variability, decreasing the viability of populations in the long term. Anthropogenic activities often disturb the natural habitats and can cause alterations in sex ratio and morphological characteristics of several species. Forest fragmentation is a major conservation concern, so that understanding its effects in natural populations is essential. In this study, we evaluated the sex ratio and the morphological characteristics of Rufous Gnateaters (Conopophaga lineata (Wied, 1831)) in small and large forest fragments in Minas Gerais, Brazil. Birds (n = 89) were sexed by plumage characteristics and molecular markers. The molecular analysis showed that plumage is not a totally reliable method for sexing Rufous Gnateaters. We observed that sex ratio did not differ between large and small forest fragments, but birds in small fragments had larger wings and tarsus. Wing and tarsus changes may affect the movement ability of individuals within and among forest fragments. In conclusion, Rufous Gnateaters have been able to survive in both small and large Atlantic rain forest fragments without altering their sex ratio, but morphological changes can be prejudicial to their long term survival.
Resumo:
A detecção do sexo de mosquitos da família Culicidae é importante em estudos faunísticos e epidemiológicos, pois somente as fêmeas possuem competência vetora para patógenos. O dimorfismo sexual de genitália e de apêndices cefálicos é, em geral, facilmente visível em culicídeos. As asas também podem ser dimórficas e assim poderiam complementar o procedimento de sexagem. No entanto, tal distinção não é facilmente notável à observação direta. Visando descrever formalmente o dimorfismo sexual alar em Aedes scapularis, um culicídeo vetorialmente competente para arbovírus e filárias, asas de machos e fêmeas foram comparadas usando-se métodos de morfometria geométrica e análise estatística multivariada. Nestas análises, populações dos municípios São Paulo e Pariquera-Açu (Estado de São Paulo) foram amostradas. A forma das asas mostrou evidente dimorfismo sexual, o que permitiu um índice de acurácia de 100% em testes-cegos de reclassificação, independentemente da origem geográfica. Já o tamanho alar foi sexualmente dimórfico apenas na população de São Paulo. Aparentemente, a forma alar é evolutivamente mais estável que o tamanho, interpretação que está de acordo com a teoria de Dujardin (2008b), de que a forma alar de insetos seria composta por caracteres genéticos quantitativos e pouco influenciada por fatores não-genéticos, enquanto que o tamanho alar seria predominantemente determinado por plasticidade decorrente de influências ambientais.
Resumo:
Description and phylogenetic analysis of the Calycopidina (Lepidoptera, Lycaenidae, Theclinae, Eumaeini): a subtribe of detritivores. The purpose of this paper is to establish a phylogenetic basis for a new Eumaeini subtribe that includes those lycaenid genera in which detritivory has been recorded. Morphological characters were coded for 82 species of the previously proposed "Lamprospilus Section" of the Eumaeini (19 of these had coding identical to another species), and a phylogenetic analysis was performed using the 63 distinct ingroup terminal taxa and six outgroups belonging to four genera. Taxonomic results include the description in the Eumaeini of Calycopidina Duarte & Robbins new subtribe (type genus Calycopis Scudder, 1876), which contains Lamprospilus Geyer, Badecla Duarte & Robbins new genus (type species Thecla badaca Hewitson), Arzecla Duarte & Robbins new genus (type species Thecla arza Hewitson), Arumecla Robbins & Duarte, Camissecla Robbins & Duarte, Electrostrymon Clench, Rubroserrata K. Johnson & Kroenlein revalidated status, Ziegleria K. Johnson, Kisutam K. Johnson & Kroenlein revalidated status, and Calycopis. Previous "infratribe" names Angulopina K. Johnson & Kroenlein, 1993, and Calycopina K. Johnson & Kroenlein, 1993, are nomenclaturally unavailable and polyphyletic as proposed. New combinations include Badecla badaca (Hewitson), Badecla picentia (Hewitson), Badecla quadramacula (Austin & K. Johnson), Badecla lanckena (Schaus), Badecla argentinensis (K. Johnson & Kroenlein), Badecla clarissa (Draudt), Arzecla arza (Hewitson), Arzecla tarpa (Godman & Salvin), Arzecla canacha (Hewitson), Arzecla calatia (Hewitson), Arzecla tucumanensis (K. Johnson & Kroenlein), Arzecla sethon (Godman & Salvin), Arzecla nubilum (H. H. Druce), Arzecla paralus (Godman & Salvin), Arzecla taminella (Schaus), Arzecla albolineata (Lathy), Electrostrymon denarius (Butler & H.Druce), Electrostrymon guzanta (Schaus), Electrostrymon perisus (H. H. Druce), Rubroserrata mathewi (Hewitson), Rubroserrata ecbatana (Hewitson), Kisutam micandriana (K. Johnson), and Kisutam syllis (Godman & Salvin). The structure of the male genitalia lateral window, labides, and brush organs are described and discussed, as are the female genitalia signa of the corpus bursae and 8th abdominal tergum. Widespread wing pattern sexual dimorphism in the Calycopidina is noted and illustrated, and the presence of alternating dark and light bands on the ventral wings of both sexes is discussed. The evidence for detritivory in Lamprospilus, Badecla, Arzecla, Arumecla, Camissecla, Electrostrymon, Ziegleria, Kisutam, and Calycopis is summarized using the new classification.
Resumo:
Based on the results of comparative analyses of 1,039 specimens of several progenies of Anopheles nuneztovarifrom three localities in Colombia, eight costal wing spot patterns were observed. Patterns I and III were the most frequent: 77.96% and 11.36%, respectively. Using the diagnostic characters ratio of the length of the basal dark area of hind tarsomere II/length of hind tarsomere II, ratio of the length of the humeral pale spot/length of the pre-humeral dark spot, and the ratio of the length of the subcostal pale spot/length of the distal sector dark spot (DS-III2/Ta-III2, HP/PHD, SCP/DSD) approximately 5% of the adult females were misidentified as a species of Nyssorhynchus, different from An. nuneztovari. Approximately 5% of the specimens showed DS-III2/Ta-III2 ratio less than 0.25 (range 0.21 - 0.24), and among them 3.34% shared a HP/PHD ratio less than 1.50. Consequently, 1.52% of An. nuneztovari individuals can be misidentified as Anopheles oswaldoi. In those specimens with the DS-III2/Ta-III2 ratios higher than 0.25, 34.45% displayed SCP/DSD values greater than 0.50 and of these, 3.65% displayed HP/PHD values greater than 1.8. This combination of characters could lead one to misidentify samples of An. nuneztovari as Anopheles rangeli. Similarly, 2.43% of the females could be identified erroneously as either Anopheles aquasalis or Anopheles benarrochi. Individuals with a HP/PHD ratio greater than 2.0, could be misidentified as Anopheles trinkae, Anopheles strodei or Anopheles evansae. A distinct combination of diagnostic characters for An. nuneztovari from Colombia is proposed.
Resumo:
Este estudo teve como objetivo avaliar os efeitos da competição larval intra e interespecífica entre Aedes aegypti e Aedes albopictus, sobre sobrevivência de larvas, tempo de desenvolvimento e comprimento de asa. O experimento foi realizado em três densidades com 5 proporções das espécies. A sobrevivência de Aedes aegypti apresentou-se superior a de Aedes albopictus em densidade intermediária e inferior em densidade alta. Somente Aedes albopictus teve seu tempo de desenvolvimento afetado. Diferenças encontradas nas comparações das combinações das espécies demonstraram que o comprimento médio de asas de Aedes aegypti, no geral, foi maior que Aedes albopictus. Nas duas espécies, a competição afetou mais o comprimento de asa e a sobrevivência que o tempo de desenvolvimento. Aedes aegypti parece apresentar maior capacidade competitiva em relação a Aedes albopictus em densidade intermediária.
Resumo:
Variation among natural populations of Culex (Culex) quinquefasciatus Say is associated with different vectorial capacities. The species Cx. quinquefasciatus is present in the equatorial, tropical and subtropical zones in the Brazilian territory, with intermediate forms between Cx. quinquefasciatus and Culex pipiens occurring in regions of latitudes around 33°-35°S. Herein, we studied geographically distinct populations of Cx. quinquefasciatus by genetic characterization and analysis of intra-specific wing morphometrics. After morphological analysis, molecular characterization of Cx. quinquefasciatus and intermediate forms was performed by polymerase chain reaction of the polymorphic nuclear region of the second intron of the acetylcholinesterase locus. Additionally, the morphology of adult female wings collected from six locations was analyzed. Wing centroid sizes were significantly different between some geographical pairs. Mean values of R2/R2+3 differed significantly after pairwise comparisons. The overall wing shape represented by morphometric characters could be divided into two main groupings. Our data suggest that Brazilian samples are morphologically and genetically distinct from the Argentinean samples and also indicated a morphological distinction between northern and southern populations of Brazilian Cx. quinquefasciatus. We suggest that wing morphology may be used for preliminary assessment of population structure of Cx. quinquefasciatusin Brazil
Resumo:
Though the replacement of European bees by Africanized honey bees in tropical America has attracted considerable attention, little is known about the temporal changes in morphological and genetic characteristics in these bee populations. We examined the changes in the morphometric and genetic profiles of an Africanized honey bee population collected near where the original African swarms escaped, after 34 years of Africanization. Workers from colonies sampled in 1968 and in 2002 were morphometrically analyzed using relative warps analysis and an Automatic Bee Identification System (ABIS). All the colonies had their mitochondrial DNA identified. The subspecies that mixed to form the Africanized honey bees were used as a comparison for the morphometric analysis. The two morphometric approaches showed great similarity of Africanized bees with the African subspecies, Apis mellifera scutellata, corroborating with other markers. We also found the population of 1968 to have the pattern of wing venation to be more similar to A. m. scutellata than the current population. The mitochondrial DNA of European origin, which was very common in the 1968 population, was not found in the current population, indicating selective pressure replacing the European with the African genome in this tropical region. Both morphometric methodologies were very effective in discriminating the A. mellifera groups; the non-linear analysis of ABIS was the most successful in identifying the bees, with more than 94% correct classifications.
Resumo:
This work presents the analysis of nonlinear aeroelastic time series from wing vibrations due to airflow separation during wind tunnel experiments. Surrogate data method is used to justify the application of nonlinear time series analysis to the aeroelastic system, after rejecting the chance for nonstationarity. The singular value decomposition (SVD) approach is used to reconstruct the state space, reducing noise from the aeroelastic time series. Direct analysis of reconstructed trajectories in the state space and the determination of Poincare sections have been employed to investigate complex dynamics and chaotic patterns. With the reconstructed state spaces, qualitative analyses may be done, and the attractors evolutions with parametric variation are presented. Overall results reveal complex system dynamics associated with highly separated flow effects together with nonlinear coupling between aeroelastic modes. Bifurcations to the nonlinear aeroelastic system are observed for two investigations, that is, considering oscillations-induced aeroelastic evolutions with varying freestream speed, and aeroelastic evolutions at constant freestream speed and varying oscillations. Finally, Lyapunov exponent calculation is proceeded in order to infer on chaotic behavior. Poincare mappings also suggest bifurcations and chaos, reinforced by the attainment of maximum positive Lyapunov exponents. Copyright (C) 2009 F. D. Marques and R. M. G. Vasconcellos.
Resumo:
Background: Baurusuchidae is a group of extinct Crocodyliformes with peculiar, dog-faced skulls, hypertrophied canines, and terrestrial, cursorial limb morphologies. Their importance for crocodyliform evolution and biogeography is widely recognized, and many new taxa have been recently described. In most phylogenetic analyses of Mesoeucrocodylia, the entire clade is represented only by Baurusuchus pachecoi, and no work has attempted to study the internal relationships of the group or diagnose the clade and its members. Methodology/Principal Findings: Based on a nearly complete skull and a referred partial skull and lower jaw, we describe a new baurusuchid from the Vale do Rio do Peixe Formation (Bauru Group), Late Cretaceous of Brazil. The taxon is diagnosed by a suite of characters that include: four maxillary teeth, supratemporal fenestra with equally developed medial and anterior rims, four laterally visible quadrate fenestrae, lateral Eustachian foramina larger than medial Eustachian foramen, deep depression on the dorsal surface of pterygoid wing. The new taxon was compared to all other baurusuchids and their internal relationships were examined based on the maximum parsimony analysis of a discrete morphological data matrix. Conclusion: The monophyly of Baurusuchidae is supported by a large number of unique characters implying an equally large morphological gap between the clade and its immediate outgroups. A complex phylogeny of baurusuchids was recovered. The internal branch pattern suggests two main lineages, one with a relatively broad geographical range between Argentina and Brazil (Pissarrachampsinae), which includes the new taxon, and an endemic clade of the Bauru Group in Brazil (Baurusuchinae).
Resumo:
The mating sign that each drone leaves when mating with a queen essentially consists of mucus gland proteins. We employed a Representational Difference Analysis (RDA) methodology to identify genes that are differentially expressed in mucus glands during sexual maturation of drones. The RDA library for mucus glands of newly emerged drones was more complex than that of 8 day-old drones, with matches to 20 predicted genes. Another 26 reads matched to the Apis genome but not to any predicted gene. Since these ESTs were located within ORFs they may represent novel honey bee genes, possibly fast evolving mucus gland proteins. In the RDA library for mucus glands of 8 day-old drones, most reads corresponded to a capsid protein of deformed wing virus, indicating high viral loads in these glands. The expression of two genes encoding venom allergens, acid phosphatase-1 and hyaluronidase, in drone mucus glands argues for their homology with the female venom glands, both associated with the reproductive system.
Resumo:
We report near-infrared spectroscopic observations of the Eta Carinae massive binary system during 2008-2009 using the CRIRES spectrograph mounted on the 8m UT 1 Very Large Telescope (VLT Antu). We detect a strong, broad absorption wing in He I lambda 10833 extending up to -1900 km s(-1) across the 2009.0 spectroscopic event. Analysis of archival Hubble Space Telescope/Space Telescope Imaging Spectrograph ultraviolet and optical data identifies a similar high-velocity absorption (up to -2100 km s(-1)) in the ultraviolet resonance lines of Si IV lambda lambda 1394, 1403 across the 2003.5 event. Ultraviolet resonance lines from low-ionization species, such as Si II lambda lambda 1527, 1533 and CII lambda lambda 1334, 1335, show absorption only up to -1200 km s(-1), indicating that the absorption with velocities -1200 to -2100 km s(-1) originates in a region markedly more rapidly moving and more ionized than the nominal wind of the primary star. Seeing-limited observations obtained at the 1.6m OPD/LNA telescope during the last four spectroscopic cycles of Eta Carinae (1989-2009) also show high-velocity absorption in He I lambda 10833 during periastron. Based on the large OPD/LNA dataset, we determine that material with velocities more negative than -900 km s(-1) is present in the phase range 0.976 <= phi <= 1.023 of the spectroscopic cycle, but absent in spectra taken at phi <= 0.947 and phi >= 1.049. Therefore, we constrain the duration of the high-velocity absorption to be 95 to 206 days (or 0.047 to 0.102 in phase). We propose that the high-velocity absorption component originates in shocked gas in the wind-wind collision zone, at distances of 15 to 45 AU in the line-of-sight to the primary star. With the aid of three-dimensional hydrodynamical simulations of the wind-wind collision zone, we find that the dense high-velocity gas is along the line-of-sight to the primary star only if the binary system is oriented in the sky such that the companion is behind the primary star during periastron, corresponding to a longitude of periastron of omega similar to 240 degrees-270 degrees. We study a possible tilt of the orbital plane relative to the Homunculus equatorial plane and conclude that our data are broadly consistent with orbital inclinations in the range i = 40 degrees-60 degrees.
Resumo:
Supersonic flow of a superfluid past a slender impenetrable macroscopic obstacle is studied in the framework of the two-dimensional (2D) defocusing nonlinear Schroumldinger (NLS) equation. This problem is of fundamental importance as a dispersive analog of the corresponding classical gas-dynamics problem. Assuming the oncoming flow speed is sufficiently high, we asymptotically reduce the original boundary-value problem for a steady flow past a slender body to the one-dimensional dispersive piston problem described by the nonstationary NLS equation, in which the role of time is played by the stretched x coordinate and the piston motion curve is defined by the spatial body profile. Two steady oblique spatial dispersive shock waves (DSWs) spreading from the pointed ends of the body are generated in both half planes. These are described analytically by constructing appropriate exact solutions of the Whitham modulation equations for the front DSW and by using a generalized Bohr-Sommerfeld quantization rule for the oblique dark soliton fan in the rear DSW. We propose an extension of the traditional modulation description of DSWs to include the linear ""ship-wave"" pattern forming outside the nonlinear modulation region of the front DSW. Our analytic results are supported by direct 2D unsteady numerical simulations and are relevant to recent experiments on Bose-Einstein condensates freely expanding past obstacles.
Resumo:
We propose a physically transparent analytic model of astrophysical S factors as a function of a center-of-mass energy E of colliding nuclei (below and above the Coulomb barrier) for nonresonant fusion reactions. For any given reaction, the S(E) model contains four parameters [two of which approximate the barrier potential, U(r)]. They are easily interpolated along many reactions involving isotopes of the same elements; they give accurate practical expressions for S(E) with only several input parameters for many reactions. The model reproduces the suppression of S(E) at low energies (of astrophysical importance) due to the shape of the low-r wing of U(r). The model can be used to reconstruct U(r) from computed or measured S(E). For illustration, we parametrize our recent calculations of S(E) (using the Sao Paulo potential and the barrier penetration formalism) for 946 reactions involving stable and unstable isotopes of C, O, Ne, and Mg (with nine parameters for all reactions involving many isotopes of the same elements, e. g., C+O). In addition, we analyze astrophysically important (12)C+(12)C reaction, compare theoretical models with experimental data, and discuss the problem of interpolating reliably known S(E) values to low energies (E less than or similar to 2-3 MeV).
Resumo:
Multifunctional structures are pointed out as an important technology for the design of aircraft with volume, mass, and energy source limitations such as unmanned air vehicles (UAVs) and micro air vehicles (MAVs). In addition to its primary function of bearing aerodynamic loads, the wing/spar structure of an UAV or a MAV with embedded piezoceramics can provide an extra electrical energy source based on the concept of vibration energy harvesting to power small and wireless electronic components. Aeroelastic vibrations of a lifting surface can be converted into electricity using piezoelectric transduction. In this paper, frequency-domain piezoaeroelastic modeling and analysis of a canti-levered platelike wing with embedded piezoceramics is presented for energy harvesting. The electromechanical finite-element plate model is based on the thin-plate (Kirchhoff) assumptions while the unsteady aerodynamic model uses the doublet-lattice method. The electromechanical and aerodynamic models are combined to obtain the piezoaeroelastic equations, which are solved using a p-k scheme that accounts for the electromechanical coupling. The evolution of the aerodynamic damping and the frequency of each mode are obtained with changing airflow speed for a given electrical circuit. Expressions for piezoaeroelastically coupled frequency response functions (voltage, current, and electrical power as well the vibratory motion) are also defined by combining flow excitation with harmonic base excitation. Hence, piezoaeroelastic evolution can be investigated in frequency domain for different airflow speeds and electrical boundary conditions. [DOI:10.1115/1.4002785]
Resumo:
Vibration-based energy harvesting has been investigated by several researchers over the last decade. The goal in this research field is to power small electronic components by converting the waste vibration energy available in their environment into electrical energy. Recent literature shows that piezoelectric transduction has received the most attention for vibration-to-electricity conversion. In practice, cantilevered beams and plates with piezoceramic layers are employed as piezoelectric energy harvesters. The existing piezoelectric energy harvester models are beam-type lumped parameter, approximate distributed parameter and analytical distributed parameter solutions. However, aspect ratios of piezoelectric energy harvesters in several cases are plate-like and predicting the power output to general (symmetric and asymmetric) excitations requires a plate-type formulation which has not been covered in the energy harvesting literature. In this paper. an electromechanically coupled finite element (FE) plate model is presented for predicting the electrical power output of piezoelectric energy harvester plates. Generalized Hamilton`s principle for electroelastic bodies is reviewed and the FE model is derived based on the Kirchhoff plate assumptions as typical piezoelectric energy harvesters are thin structures. Presence of conductive electrodes is taken into account in the FE model. The predictions of the FE model are verified against the analytical solution for a unimorph cantilever and then against the experimental and analytical results of a bimorph cantilever with a tip mass reported in the literature. Finally, an optimization problem is solved where the aluminum wing spar of an unmanned air vehicle (UAV) is modified to obtain a generator spar by embedding piezoceramics for the maximum electrical power without exceeding a prescribed mass addition limit. (C) 2009 Elsevier Ltd. All rights reserved.