934 resultados para Random parameter Logit Model
A perturbed parameter model ensemble to investigate Mt. Pinatubo's 1991 initial sulfur mass emission
Resumo:
This study investigates a theoretical model where a longitudinal process, that is a stationary Markov-Chain, and a Weibull survival process share a bivariate random effect. Furthermore, a Quality-of-Life adjusted survival is calculated as the weighted sum of survival time. Theoretical values of population mean adjusted survival of the described model are computed numerically. The parameters of the bivariate random effect do significantly affect theoretical values of population mean. Maximum-Likelihood and Bayesian methods are applied on simulated data to estimate the model parameters. Based on the parameter estimates, predicated population mean adjusted survival can then be calculated numerically and compared with the theoretical values. Bayesian method and Maximum-Likelihood method provide parameter estimations and population mean prediction with comparable accuracy; however Bayesian method suffers from poor convergence due to autocorrelation and inter-variable correlation. ^
Resumo:
Interannual environmental variability in Peru is dominated by the El Niño Southern Oscillation (ENSO). The most dramatic changes are associated with the warm El Niño (EN) phase (opposite the cold La Niña phase), which disrupts the normal coastal upwelling and affects the dynamics of many coastal marine and terrestrial resources. This study presents a trophic model for Sechura Bay, located at the northern extension of the Peruvian upwelling system, where ENSO-induced environmental variability is most extreme. Using an initial steady-state model for the year 1996, we explore the dynamics of the ecosystem through the year 2003 (including the strong EN of 1997/98 and the weaker EN of 2002/03). Based on support from literature, we force biomass of several non-trophically-mediated 'drivers' (e.g. Scallops, Benthic detritivores, Octopus, and Littoral fish) to observe whether the fit between historical and simulated changes (by the trophic model) is improved. The results indicate that the Sechura Bay Ecosystem is a relatively inefficient system from a community energetics point of view, likely due to the periodic perturbations of ENSO. A combination of high system productivity and low trophic level target species of invertebrates (i.e. scallops) and fish (i.e. anchoveta) results in high catches and an efficient fishery. The importance of environmental drivers is suggested, given the relatively small improvements in the fit of the simulation with the addition of trophic drivers on remaining functional groups' dynamics. An additional multivariate regression model is presented for the scallop Argopecten purpuratus, which demonstrates a significant correlation between both spawning stock size and riverine discharge-mediated mortality on catch levels. These results are discussed in the context of the appropriateness of trophodynamic modeling in relatively open systems, and how management strategies may be focused given the highly environmentally influenced marine resources of the region.
Resumo:
Stochastic model updating must be considered for quantifying uncertainties inherently existing in real-world engineering structures. By this means the statistical properties,instead of deterministic values, of structural parameters can be sought indicating the parameter variability. However, the implementation of stochastic model updating is much more complicated than that of deterministic methods particularly in the aspects of theoretical complexity and low computational efficiency. This study attempts to propose a simple and cost-efficient method by decomposing a stochastic updating process into a series of deterministic ones with the aid of response surface models and Monte Carlo simulation. The response surface models are used as surrogates for original FE models in the interest of programming simplification, fast response computation and easy inverse optimization. Monte Carlo simulation is adopted for generating samples from the assumed or measured probability distributions of responses. Each sample corresponds to an individual deterministic inverse process predicting the deterministic values of parameters. Then the parameter means and variances can be statistically estimated based on all the parameter predictions by running all the samples. Meanwhile, the analysis of variance approach is employed for the evaluation of parameter variability significance. The proposed method has been demonstrated firstly on a numerical beam and then a set of nominally identical steel plates tested in the laboratory. It is found that compared with the existing stochastic model updating methods, the proposed method presents similar accuracy while its primary merits consist in its simple implementation and cost efficiency in response computation and inverse optimization.
Resumo:
An integrated approach composed of a random utility-based multiregional input-output model and a road transport network model was developed for evaluating the application of a fee to heavy-goods vehicles (HGVs) in Spain. For this purpose, a distance-based charge scenario (in euros per vehicle kilometer) for HGVs was evaluated for a selected motorway network in Spain. Although the aim of this charging policy was to increase the efficiency of transport, the approach strongly identified direct and indirect impacts on the regional economy. Estimates of the magnitude and extent of indirect effects on aggregated macroeconomic indicators (employment and gross domestic product) are provided. The macroeconomic effects of the charging policy were found to be positive for some regions and negative for other regions.
Resumo:
Flash floods are of major relevance in natural disaster management in the Mediterranean region. In many cases, the damaging effects of flash floods can be mitigated by adequate management of flood control reservoirs. This requires the development of suitable models for optimal operation of reservoirs. A probabilistic methodology for calibrating the parameters of a reservoir flood control model (RFCM) that takes into account the stochastic variability of flood events is presented. This study addresses the crucial problem of operating reservoirs during flood events, considering downstream river damages and dam failure risk as conflicting operation criteria. These two criteria are aggregated into a single objective of total expected damages from both the maximum released flows and stored volumes (overall risk index). For each selected parameter set the RFCM is run under a wide range of hydrologic loads (determined through Monte Carlo simulation). The optimal parameter set is obtained through the overall risk index (balanced solution) and then compared with other solutions of the Pareto front. The proposed methodology is implemented at three different reservoirs in the southeast of Spain. The results obtained show that the balanced solution offers a good compromise between the two main objectives of reservoir flood control management
Resumo:
A 2D computer simulation method of random packings is applied to sets of particles generated by a self-similar uniparametric model for particle size distributions (PSDs) in granular media. The parameter p which controls the model is the proportion of mass of particles corresponding to the left half of the normalized size interval [0,1]. First the influence on the total porosity of the parameter p is analyzed and interpreted. It is shown that such parameter, and the fractal exponent of the associated power scaling, are efficient packing parameters, but this last one is not in the way predicted in a former published work addressing an analogous research in artificial granular materials. The total porosity reaches the minimum value for p = 0.6. Limited information on the pore size distribution is obtained from the packing simulations and by means of morphological analysis methods. Results show that the range of pore sizes increases for decreasing values of p showing also different shape in the volume pore size distribution. Further research including simulations with a greater number of particles and image resolution are required to obtain finer results on the hierarchical structure of pore space.
Resumo:
Plants can defend themselves from potential pathogenic microorganisms relying on a complex interplay of signaling pathways: activation of the MAPK cascade, transcription of defense related genes, production of reactive oxygen species, nitric oxide and synthesis of other defensive compounds such as phytoalexins. These events are triggered by the recognition of pathogen’s effectors (effector-triggered immunity) or PAMPs (PAMP-triggered immunity). The Cerato Platanin Family (CPF) members are Cys-rich proteins secreted and localized on fungal cell walls, involved in several aspects of fungal development and pathogen-host interactions. Although more than hundred genes of the CPF have been identified and analyzed, the structural and functional characterization of the expressed proteins has been restricted only to few members of the family. Interestingly, those proteins have been shown to bind chitin with diverse affinity and after foliar treatment they elicit defensive mechanisms in host and non-host plants. This property turns cerato platanins into interesting candidates, worth to be studied to develop new fungal elicitors with applications in sustainable agriculture. This study focus on cerato-platanin (CP), core member of the family and on the orthologous cerato-populin (Pop1). The latter shows an identity of 62% and an overall homology of 73% with respect to CP. Both proteins are able to induce MAPKs phosphorylation, production of reactive oxygen species and nitric oxide, overexpression of defense’s related genes, programmed cell death and synthesis of phytoalexins. CP, however, when compared to Pop1, induces a faster response and, in some cases, a stronger activity on plane leaves. Aim of the present research is to verify if the dissimilarities observed in the defense elicitation activity of these proteins can be associated to their structural and dynamic features. Taking advantage of the available CP NMR structure, Pop1’s 3D one was obtained by homology modeling. Experimental residual dipolar couplings and 1H, 15N, 13C resonance assignments were used to validate the model. Previous works on CPF members, addressed the highly conserved random coil regions (loops b1-b2 and b2-b3) as sufficient and necessary to induce necrosis in plants’ leaves: that region was investigated in both Pop1 and CP. In the two proteins the loops differ, in their primary sequence, for few mutations and an insertion with a consequent diversification of the proteins’ electrostatic surface. A set of 2D and 3D NMR experiments was performed to characterize both the spatial arrangement and the dynamic features of the loops. NOE data revealed a more extended network of interactions between the loops in Pop1 than in CP. In addition, in Pop1 we identified a salt bridge Lys25/Asp52 and a strong hydrophobic interaction between Phe26/Trp53. These structural features were expected not only to affect the loops’ spatial arrangement, but also to reduce the degree of their conformational freedom. Relaxation data and the order parameter S2 indeed highlighted reduced flexibility, in particular for loop b1-b2 of Pop1. In vitro NMR experiments, where Pop1 and CP were titrated with oligosaccharides, supported the hypothesis that the loops structural and dynamic differences may be responsible for the different chitin-binding properties of the two proteins: CP selectively binds tetramers of chitin in a shallow groove on one side of the barrel defined by loops b1-b2, b2-b3 and b4-b5, Pop1, instead, interacts in a non-specific fashion with oligosaccharides. Because the region involved in chitin-binding is also responsible for the defense elicitation activity, possibly being recognized by plant's receptors, it is reasonable to expect that those structural and dynamic modifications may also justify the different extent of defense elicitation. To test that hypothesis, the initial steps of a protocol aimed to the identify a receptor for CP, in silico, are presented.
Resumo:
We investigate the critical properties of the four-state commutative random permutation glassy Potts model in three and four dimensions by means of Monte Carlo simulations and a finite-size scaling analysis. By using a field programmable gate array, we have been able to thermalize a large number of samples of systems with large volume. This has allowed us to observe a spin-glass ordered phase in d=4 and to study the critical properties of the transition. In d=3, our results are consistent with the presence of a Kosterlitz-Thouless transition, but also with different scenarios: transient effects due to a value of the lower critical dimension slightly below 3 could be very important.
Resumo:
Federal Highway Administration, Office of Research and Development, Washington, D.C.
Resumo:
Mixture models implemented via the expectation-maximization (EM) algorithm are being increasingly used in a wide range of problems in pattern recognition such as image segmentation. However, the EM algorithm requires considerable computational time in its application to huge data sets such as a three-dimensional magnetic resonance (MR) image of over 10 million voxels. Recently, it was shown that a sparse, incremental version of the EM algorithm could improve its rate of convergence. In this paper, we show how this modified EM algorithm can be speeded up further by adopting a multiresolution kd-tree structure in performing the E-step. The proposed algorithm outperforms some other variants of the EM algorithm for segmenting MR images of the human brain. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Aims [1] To quantify the random and predictable components of variability for aminoglycoside clearance and volume of distribution [2] To investigate models for predicting aminoglycoside clearance in patients with low serum creatinine concentrations [3] To evaluate the predictive performance of initial dosing strategies for achieving an aminoglycoside target concentration. Methods Aminoglycoside demographic, dosing and concentration data were collected from 697 adult patients (>=20 years old) as part of standard clinical care using a target concentration intervention approach for dose individualization. It was assumed that aminoglycoside clearance had a renal and a nonrenal component, with the renal component being linearly related to predicted creatinine clearance. Results A two compartment pharmacokinetic model best described the aminoglycoside data. The addition of weight, age, sex and serum creatinine as covariates reduced the random component of between subject variability (BSVR) in clearance (CL) from 94% to 36% of population parameter variability (PPV). The final pharmacokinetic parameter estimates for the model with the best predictive performance were: CL, 4.7 l h(-1) 70 kg(-1); intercompartmental clearance (CLic), 1 l h(-1) 70 kg(-1); volume of central compartment (V-1), 19.5 l 70 kg(-1); volume of peripheral compartment (V-2) 11.2 l 70 kg(-1). Conclusions Using a fixed dose of aminoglycoside will achieve 35% of typical patients within 80-125% of a required dose. Covariate guided predictions increase this up to 61%. However, because we have shown that random within subject variability (WSVR) in clearance is less than safe and effective variability (SEV), target concentration intervention can potentially achieve safe and effective doses in 90% of patients.
Resumo:
Optimal sampling times are found for a study in which one of the primary purposes is to develop a model of the pharmacokinetics of itraconazole in patients with cystic fibrosis for both capsule and solution doses. The optimal design is expected to produce reliable estimates of population parameters for two different structural PK models. Data collected at these sampling times are also expected to provide the researchers with sufficient information to reasonably discriminate between the two competing structural models.