980 resultados para Random noise theory
Resumo:
The recently reported Monte Carlo Random Path Sampling method (RPS) is here improved and its application is expanded to the study of the 2D and 3D Ising and discrete Heisenberg models. The methodology was implemented to allow use in both CPU-based high-performance computing infrastructures (C/MPI) and GPU-based (CUDA) parallel computation, with significant computational performance gains. Convergence is discussed, both in terms of free energy and magnetization dependence on field/temperature. From the calculated magnetization-energy joint density of states, fast calculations of field and temperature dependent thermodynamic properties are performed, including the effects of anisotropy on coercivity, and the magnetocaloric effect. The emergence of first-order magneto-volume transitions in the compressible Ising model is interpreted using the Landau theory of phase transitions. Using metallic Gadolinium as a real-world example, the possibility of using RPS as a tool for computational magnetic materials design is discussed. Experimental magnetic and structural properties of a Gadolinium single crystal are compared to RPS-based calculations using microscopic parameters obtained from Density Functional Theory.
Resumo:
This paper reports on an attempt to apply Genetic Algorithms to the problem of optimising a complex system, through discrete event simulation (Simulation Optimisation), with a view to reducing the noise associated with such a procedure. We are applying this proposed solution approach to our application test bed, a Crossdocking distribution centre, because it provides a good representative of the random and unpredictable behaviour of complex systems i.e. automated machine random failure and the variability of manual order picker skill. It is known that there is noise in the output of discrete event simulation modelling. However, our interest focuses on the effect of noise on the evaluation of the fitness of candidate solutions within the search space, and the development of techniques to handle this noise. The unique quality of our proposed solution approach is we intend to embed a noise reduction technique in our Genetic Algorithm based optimisation procedure, in order for it to be robust enough to handle noise, efficiently estimate suitable fitness function, and produce good quality solutions with minimal computational effort.
Resumo:
A methodology has been developed and presented to enable the use of small to medium scale acoustic hover facilities for the quantitative measurement of rotor impulsive noise. The methodology was applied to the University of Maryland Acoustic Chamber resulting in accurate measurements of High Speed Impulsive (HSI) noise for rotors running at tip Mach numbers between 0.65 and 0.85 – with accuracy increasing as the tip Mach number was increased. Several factors contributed to the success of this methodology including: • High Speed Impulsive (HSI) noise is characterized by very distinct pulses radiated from the rotor. The pulses radiate high frequency energy – but the energy is contained in short duration time pulses. • The first reflections from these pulses can be tracked (using ray theory) and, through adjustment of the microphone position and suitably applied acoustic treatment at the reflected surface, reduced to small levels. A computer code was developed that automates this process. The code also tracks first bounce reflection timing, making it possible to position the first bounce reflections outside of a measurement window. • Using a rotor with a small number of blades (preferably one) reduces the number of interfering first bounce reflections and generally improves the measured signal fidelity. The methodology will help the gathering of quantitative hovering rotor noise data in less than optimal acoustic facilities and thus enable basic rotorcraft research and rotor blade acoustic design.
Resumo:
This dissertation is devoted to the equations of motion governing the evolution of a fluid or gas at the macroscopic scale. The classical model is a PDE description known as the Navier-Stokes equations. The behavior of solutions is notoriously complex, leading many in the scientific community to describe fluid mechanics using a statistical language. In the physics literature, this is often done in an ad-hoc manner with limited precision about the sense in which the randomness enters the evolution equation. The stochastic PDE community has begun proposing precise models, where a random perturbation appears explicitly in the evolution equation. Although this has been an active area of study in recent years, the existing literature is almost entirely devoted to incompressible fluids. The purpose of this thesis is to take a step forward in addressing this statistical perspective in the setting of compressible fluids. In particular, we study the well posedness for the corresponding system of Stochastic Navier Stokes equations, satisfied by the density, velocity, and temperature. The evolution of the momentum involves a random forcing which is Brownian in time and colored in space. We allow for multiplicative noise, meaning that spatial correlations may depend locally on the fluid variables. Our main result is a proof of global existence of weak martingale solutions to the Cauchy problem set within a bounded domain, emanating from large initial datum. The proof involves a mix of deterministic and stochastic analysis tools. Fundamentally, the approach is based on weak compactness techniques from the deterministic theory combined with martingale methods. Four layers of approximate stochastic PDE's are built and analyzed. A careful study of the probability laws of our approximating sequences is required. We prove appropriate tightness results and appeal to a recent generalization of the Skorohod theorem. This ultimately allows us to deduce analogues of the weak compactness tools of Lions and Feireisl, appropriately interpreted in the stochastic setting.
Resumo:
International audience
Resumo:
International audience
Resumo:
Doutoramento em Economia.
Resumo:
Light localisation in one-dimensional (1D) randomly disordered medium is usually characterized by randomly distributed resonances with fluctuating transmission values, instead of selectively distributed resonances with close-to-unity transmission values that are needed in real application fields. By a resonance tuning scheme developed recently, opening of favorable resonances or closing of unfavorable resonances are achieved by disorder micro-modification, both on the layered medium and the fibre Bragg grating (FBG) array. And furthermore, it is shown that those disorder-induced resonances are independently tunable. Therefore, selected resonances and arranged light localisation can be achieved via artificial disorder, and thus meet the demand of various application fields.
Resumo:
The frequency, time and places of charging have large impact on the Quality of Experience (QoE) of EV drivers. It is critical to design effective EV charging scheduling system to improve the QoE of EV drivers. In order to improve EV charging QoE and utilization of CSs, we develop an innovative travel plan aware charging scheduling scheme for moving EVs to be charged at Charging Stations (CS). In the design of the proposed charging scheduling scheme for moving EVs, the travel routes of EVs and the utility of CSs are taken into consideration. The assignment of EVs to CSs is modeled as a two-sided many-to-one matching game with the objective of maximizing the system utility which reflects the satisfactory degrees of EVs and the profits of CSs. A Stable Matching Algorithm (SMA) is proposed to seek stable matching between charging EVs and CSs. Furthermore, an improved Learning based On-LiNe scheduling Algorithm (LONA) is proposed to be executed by each CS in a distributed manner. The performance gain of the average system utility by the SMA is up to 38.2% comparing to the Random Charging Scheduling (RCS) algorithm, and 4.67% comparing to Only utility of Electric Vehicle Concerned (OEVC) scheme. The effectiveness of the proposed SMA and LONA is also demonstrated by simulations in terms of the satisfactory ratio of charging EVs and the the convergence speed of iteration.
Resumo:
We apply prospect theory to explain how personal and corporate bankruptcy laws affect risk perceptions of entrepreneurs at time of entry and therefore their growth ambitions. Previous theories have reached ambiguous conclusions as to whether countries with more debtor-friendly bankruptcy laws (i.e. laws that are more forgiving towards debtors in bankruptcy proceedings) are likely to have more entrepreneurs, or whether, creditorfriendly regimes have positive effects on new ventures via enhanced incentives for the supply of credit to entrepreneurs. Responding to this ambiguity, we apply prospect theory to propose that entrepreneurs do not attach the same significance to different elements of bankruptcy codes—and to explain which aspects of debtor-friendly bankruptcy laws matter more to entrepreneurs. Based on this, we derive and confirm hypotheses about the impact of aspects of bankruptcy codes on entrepreneurial activity using the Global Entrepreneurship Monitor combined with data on both personal and corporate bankruptcyregulations for 15 developed OECD countries. We use multilevel random coefficient logistic regressions to take account of the hierarchical nature of the data (country and individual levels). Because entrepreneurs and creditors are sensitive to different elements of the codes, there is scope for optimisation of the legal design of bankruptcy law to achieve both an adequate supply of credit and to encourage high-ambition entrepreneurship.
Resumo:
The main topic of this thesis is confounding in linear regression models. It arises when a relationship between an observed process, the covariate, and an outcome process, the response, is influenced by an unmeasured process, the confounder, associated with both. Consequently, the estimators for the regression coefficients of the measured covariates might be severely biased, less efficient and characterized by misleading interpretations. Confounding is an issue when the primary target of the work is the estimation of the regression parameters. The central point of the dissertation is the evaluation of the sampling properties of parameter estimators. This work aims to extend the spatial confounding framework to general structured settings and to understand the behaviour of confounding as a function of the data generating process structure parameters in several scenarios focusing on the joint covariate-confounder structure. In line with the spatial statistics literature, our purpose is to quantify the sampling properties of the regression coefficient estimators and, in turn, to identify the most prominent quantities depending on the generative mechanism impacting confounding. Once the sampling properties of the estimator conditionally on the covariate process are derived as ratios of dependent quadratic forms in Gaussian random variables, we provide an analytic expression of the marginal sampling properties of the estimator using Carlson’s R function. Additionally, we propose a representative quantity for the magnitude of confounding as a proxy of the bias, its first-order Laplace approximation. To conclude, we work under several frameworks considering spatial and temporal data with specific assumptions regarding the covariance and cross-covariance functions used to generate the processes involved. This study allows us to claim that the variability of the confounder-covariate interaction and of the covariate plays the most relevant role in determining the principal marker of the magnitude of confounding.
Resumo:
The models of teaching social sciences and clinical practice are insufficient for the needs of practical-reflective teaching of social sciences applied to health. The scope of this article is to reflect on the challenges and perspectives of social science education for health professionals. In the 1950s the important movement bringing together social sciences and the field of health began, however weak credentials still prevail. This is due to the low professional status of social scientists in health and the ill-defined position of the social sciences professionals in the health field. It is also due to the scant importance attributed by students to the social sciences, the small number of professionals and the colonization of the social sciences by the biomedical culture in the health field. Thus, the professionals of social sciences applied to health are also faced with the need to build an identity, even after six decades of their presence in the field of health. This is because their ambivalent status has established them as a partial, incomplete and virtual presence, requiring a complex survival strategy in the nebulous area between social sciences and health.
Resumo:
Resource specialisation, although a fundamental component of ecological theory, is employed in disparate ways. Most definitions derive from simple counts of resource species. We build on recent advances in ecophylogenetics and null model analysis to propose a concept of specialisation that comprises affinities among resources as well as their co-occurrence with consumers. In the distance-based specialisation index (DSI), specialisation is measured as relatedness (phylogenetic or otherwise) of resources, scaled by the null expectation of random use of locally available resources. Thus, specialists use significantly clustered sets of resources, whereas generalists use over-dispersed resources. Intermediate species are classed as indiscriminate consumers. The effectiveness of this approach was assessed with differentially restricted null models, applied to a data set of 168 herbivorous insect species and their hosts. Incorporation of plant relatedness and relative abundance greatly improved specialisation measures compared to taxon counts or simpler null models, which overestimate the fraction of specialists, a problem compounded by insufficient sampling effort. This framework disambiguates the concept of specialisation with an explicit measure applicable to any mode of affinity among resource classes, and is also linked to ecological and evolutionary processes. This will enable a more rigorous deployment of ecological specialisation in empirical and theoretical studies.
Resumo:
Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.
Resumo:
to identify salient behavioral, normative, control and self-efficacy beliefs related to the behavior of adherence to oral antidiabetic agents, using the Theory of Planned Behavior. cross-sectional, exploratory study with 17 diabetic patients in chronic use of oral antidiabetic medication and in outpatient follow-up. Individual interviews were recorded, transcribed and content-analyzed using pre-established categories. behavioral beliefs concerning advantages and disadvantages of adhering to medication emerged, such as the possibility of avoiding complications from diabetes, preventing or delaying the use of insulin, and a perception of side effects. The children of patients and physicians are seen as important social references who influence medication adherence. The factors that facilitate adherence include access to free-of-cost medication and taking medications associated with temporal markers. On the other hand, a complex therapeutic regimen was considered a factor that hinders adherence. Understanding how to use medication and forgetfulness impact the perception of patients regarding their ability to adhere to oral antidiabetic agents. medication adherence is a complex behavior permeated by behavioral, normative, control and self-efficacy beliefs that should be taken into account when assessing determinants of behavior.