904 resultados para Random coefficient multinomial logit
Resumo:
In this study, we present a method designed to generate dynamic holograms in holographic optical tweezers. The approach combines our random mask encoding method with iterative high-efficiency algorithms. This hybrid method can be used to dynamically modify precalculated holograms, giving them new functionalities¿temporarily or permanently¿with a low computational cost. This allows the easy addition or removal of a single trap or the independent control of groups of traps for manipulating a variety of rigid structures in real time.
Resumo:
A new solvable model of synchronization dynamics is introduced. It consists of a system of long range interacting tops or magnetic moments with random precession frequencies. The model allows for an explicit study of orientational effects in synchronization phenomena as well as nonlinear processes in resonance phenomena in strongly coupled magnetic systems. A stability analysis of the incoherent solution is performed for different types of orientational disorder. A system with orientational disorder always synchronizes in the absence of noise.
Resumo:
We develop a general theory for percolation in directed random networks with arbitrary two-point correlations and bidirectional edgesthat is, edges pointing in both directions simultaneously. These two ingredients alter the previously known scenario and open new views and perspectives on percolation phenomena. Equations for the percolation threshold and the sizes of the giant components are derived in the most general case. We also present simulation results for a particular example of uncorrelated network with bidirectional edges confirming the theoretical predictions.
Resumo:
We apply the formalism of the continuous-time random walk to the study of financial data. The entire distribution of prices can be obtained once two auxiliary densities are known. These are the probability densities for the pausing time between successive jumps and the corresponding probability density for the magnitude of a jump. We have applied the formalism to data on the U.S. dollardeutsche mark future exchange, finding good agreement between theory and the observed data.
Resumo:
We consider an infinite number of noninteracting lattice random walkers with the goal of determining statistical properties of the time, out of a total time T, that a single site has been occupied by n random walkers. Initially the random walkers are assumed uniformly distributed on the lattice except for the target site at the origin, which is unoccupied. The random-walk model is taken to be a continuous-time random walk and the pausing-time density at the target site is allowed to differ from the pausing-time density at other sites. We calculate the dependence of the mean time of occupancy by n random walkers as a function of n and the observation time T. We also find the variance for the cumulative time during which the site is unoccupied. The large-T behavior of the variance differs according as the random walk is transient or recurrent. It is shown that the variance is proportional to T at large T in three or more dimensions, it is proportional to T3/2 in one dimension and to TlnT in two dimensions.
Resumo:
We present exact equations and expressions for the first-passage-time statistics of dynamical systems that are a combination of a diffusion process and a random external force modeled as dichotomous Markov noise. We prove that the mean first passage time for this system does not show any resonantlike behavior.
Resumo:
A dynamical model based on a continuous addition of colored shot noises is presented. The resulting process is colored and non-Gaussian. A general expression for the characteristic function of the process is obtained, which, after a scaling assumption, takes on a form that is the basis of the results derived in the rest of the paper. One of these is an expansion for the cumulants, which are all finite, subject to mild conditions on the functions defining the process. This is in contrast with the Lévy distribution¿which can be obtained from our model in certain limits¿which has no finite moments. The evaluation of the spectral density and the form of the probability density function in the tails of the distribution shows that the model exhibits a power-law spectrum and long tails in a natural way. A careful analysis of the characteristic function shows that it may be separated into a part representing a Lévy process together with another part representing the deviation of our model from the Lévy process. This
Resumo:
We study a class of models of correlated random networks in which vertices are characterized by hidden variables controlling the establishment of edges between pairs of vertices. We find analytical expressions for the main topological properties of these models as a function of the distribution of hidden variables and the probability of connecting vertices. The expressions obtained are checked by means of numerical simulations in a particular example. The general model is extended to describe a practical algorithm to generate random networks with an a priori specified correlation structure. We also present an extension of the class, to map nonequilibrium growing networks to networks with hidden variables that represent the time at which each vertex was introduced in the system.
Resumo:
Economy, and consequently trade, is a fundamental part of human social organization which, until now, has not been studied within the network modeling framework. Here we present the first, to the best of our knowledge, empirical characterization of the world trade web, that is, the network built upon the trade relationships between different countries in the world. This network displays the typical properties of complex networks, namely, scale-free degree distribution, the small-world property, a high clustering coefficient, and, in addition, degree-degree correlation between different vertices. All these properties make the world trade web a complex network, which is far from being well described through a classical random network description.
Resumo:
We present an exact solution for the order parameters that characterize the stationary behavior of a population of Kuramotos phase oscillators under random external fields [Y. Kuramoto, in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics, Vol. 39 (Springer, Berlin, 1975), p. 420]. From these results it is possible to generate the phase diagram of models with an arbitrary distribution of random frequencies and random fields.
Resumo:
We propose a generalization of the persistent random walk for dimensions greater than 1. Based on a cubic lattice, the model is suitable for an arbitrary dimension d. We study the continuum limit and obtain the equation satisfied by the probability density function for the position of the random walker. An exact solution is obtained for the projected motion along an axis. This solution, which is written in terms of the free-space solution of the one-dimensional telegraphers equation, may open a new way to address the problem of light propagation through thin slabs.
Resumo:
The usual development of the continuous-time random walk (CTRW) assumes that jumps and time intervals are a two-dimensional set of independent and identically distributed random variables. In this paper, we address the theoretical setting of nonindependent CTRWs where consecutive jumps and/or time intervals are correlated. An exact solution to the problem is obtained for the special but relevant case in which the correlation solely depends on the signs of consecutive jumps. Even in this simple case, some interesting features arise, such as transitions from unimodal to bimodal distributions due to correlation. We also develop the necessary analytical techniques and approximations to handle more general situations that can appear in practice.
Resumo:
By generalizing effective-medium theory to the case of orientationally ordered but positionally disordered two component mixtures, it is shown that the anisotropic dielectric tensor of oxide superconductors can be extracted from microwave measurements on oriented crystallites of YBa2Cu3O7¿x embedded in epoxy. Surprisingly, this technique appears to be the only one which can access the resistivity perpendicular to the copper¿oxide planes in crystallites that are too small for depositing electrodes. This possibility arises in part because the real part of the dielectric constant of oxide superconductors has a large magnitude. The validity of the effective-medium approach for orientationally ordered mixtures is corroborated by simulations on two¿dimensional anisotropic random resistor networks. Analysis of the experimental data suggests that the zero-temperature limit of the finite frequency resistivity does not vanish along the c axis, a result which would simply the existence of states at the Fermi surface, even in the superconducting state