955 resultados para Radio detectors
Resumo:
Continuing achievements in hardware technology are bringing ubiquitous computing closer to reality. The notion of a connected, interactive and autonomous environment is common to all sensor networks, biosystems and radio frequency identification (RFID) devices, and the emergence of significant deployments and sophisticated applications can be expected. However, as more information is collected and transmitted, security issues will become vital for such a fully connected environment. In this study the authors consider adding security features to low-cost devices such as RFID tags. In particular, the authors consider the implementation of a digital signature architecture that can be used for device authentication, to prevent tag cloning, and for data authentication to prevent transmission forgery. The scheme is built around the signature variant of the cryptoGPS identification scheme and the SHA-1 hash function. When implemented on 130 nm CMOS the full design uses 7494 gates and consumes 4.72 mu W of power, making it smaller and more power efficient than previous low-cost digital signature designs. The study also presents a low-cost SHA-1 hardware architecture which is the smallest standardised hash function design to date.
Resumo:
The article explores the work of the Canadian sound artist Anna Friz over the last decade. Her work deals explicitly with issues of technology and the relative absence of women's voices on radio. Exploring her work as a composer, installation artist, instrumentalist, performance artist and storyteller, and contextualising these practices within feminist critiques and radio conventions, the article explores Friz's ‘self-reflexive radio’. Ideas of ‘supermodernity’, ‘displacement’ and ‘critical utopia’ are deployed to discuss specific pieces of Friz's work in relation to identity and space. The article argues that Friz reconfigures the radio as a site of resistance to dominant constructions of contemporary globalised space and cultures, the politics of informational capitalism and the uneven flows that these cultures and politics engender.
Resumo:
Silicon on Insulator (SOI) substrates offer a promising platform for monolithic high energy physics detectors with integrated read-out electronics and pixel diodes. This paper describes the fabrication and characterisation of specially-configured SOI substrates using improved bonded wafer ion split and grind/polish technologies. The crucial interface between the high resistivity handle silicon and the SOI buried oxide has been characterised using both pixel diodes and circular geometry MOS transistors. Pixel diode breakdown voltages were typically greater than 100V and average leakage current densities at 70 V were only 55 nA/ sq cm. MOS transistors subjected to 24 GeV proton irradiation showed an increased SOI buried oxide trapped charge of only 3.45x1011cn-2 for a dose of 2.7Mrad
Resumo:
In this paper, the distribution of the ratio of extreme eigenvalues of a complex Wishart matrix is studied in order to calculate the exact decision threshold as a function of the desired probability of false alarm for the maximum-minimum eigenvalue (MME) detector. In contrast to the asymptotic analysis reported in the literature, we consider a finite number of cooperative receivers and a finite number of samples and derive the exact decision threshold for the probability of false alarm. The proposed exact formulation is further reduced to the case of two receiver-based cooperative spectrum sensing. In addition, an approximate closed-form formula of the exact threshold is derived in terms of a desired probability of false alarm for a special case having equal number of receive antennas and signal samples. Finally, the derived analytical exact decision thresholds are verified with Monte-Carlo simulations. We show that the probability of detection performance using the proposed exact decision thresholds achieves significant performance gains compared to the performance of the asymptotic decision threshold.
Resumo:
Neotropical orchid bees (Euglossini) are often cited as classic examples of trapline-foragers with potentially extensive foraging ranges. If long-distance movements are habitual, rare plants in widely scattered locations may benefit from euglossine pollination services. Here we report the first successful use of micro radio telemetry to track the movement of an insect pollinator in a complex and forested environment. Our results indicate that individual male orchid bees (Exaerete frontalis) habitually use large rainforest areas (at least 42-115 ha) on a daily basis. Aerial telemetry located individuals up to 5 km away from their core areas, and bees were often stationary, for variable periods, between flights to successive localities. These data suggest a higher degree of site fidelity than what may be expected in a free living male bee, and has implications for our understanding of biological activity patterns and the evolution of forest pollinators.
Resumo:
A novel model for indoor wireless communication, based on a dual image and ray-shooting approach, is presented. The model, capable of improved site-specific indoor propagation prediction, considers multiple human bodies moving within the environment. In a modern office at 2.45GHz, the combined effect of pedestrian traffic and a moving receiver causes rapid temporal fading of up to 30dB.
Resumo:
The electrical and communication performance of a 0.8-mu W UHF temperature telemeter designed for human vaginal placement is discussed; a solenoidal loop antenna was used, occupying a volume of 0.1 cm(3). In situ, measured power absorption was between 19-25 dB, resulting in an effective operating range of 10 m. Capacitive loading lowered the antenna's resonant frequency by 1.4% and there was a significant polarization change in the radiated output.
Resumo:
User induced errors are common when women repetitively employ conventional probe type thermometers to chart their basal body temperatures in an effort to indicate ovulation. An alternative technique employing a two-part telemetric thermometer is proposed, with low-power, SAWR-controlled UHF radio as the transmission medium. Worn overnight in the vagina, the 1 mu W erp telemetry transmitter sends pulse modulated data continuously to a microcontroller in a nearby receiver; a real time clock enables programmable sampling and storage of the subject's temperature to 0.1 degrees C resolution. Initial clinical results indicate an enhanced performance compared to oral and axillary temperature trends taken by a mercury-in-glass thermometer. Polar plots of both the isolated and body-worn telemetry transmitte are presented; body indced attenuations of up to 30 dB were measured.