969 resultados para Radiation dose reduction


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Combined pegylated interferon (PegIFN) and ribavirin represents the standard therapy for patients with chronic hepatitis C (CHC), which allows for sustained viral response (SVR) in up to 90% of patients depending on certain viral and host factors. Clinical studies have demonstrated the importance of adherence to therapy, that is, the ability of patients to tolerate and sustain a fully dosed therapy regimen. Adherence is markedly impaired by treatment-related adverse effects. In particular, haemolytic anaemia often requires dose reduction or termination of ribavirin treatment, which compromises treatment efficacy. Recent evidence points to a beneficial role of recombinant erythropoietin (EPO) in alleviating ribavirin-induced anaemia thereby improving quality of life, enabling higher ribavirin dosage and consequently improving SVR. However, no general consensus exists regarding the use of EPO for specific indications: its optimal dosing, treatment benefits and potential risks or cost efficiency. The Swiss Association for the Study of the Liver (SASL) has therefore organized an expert meeting to critically review and discuss the current evidence and to phrase recommendations for clinical practice. A consensus was reached recommending the use of EPO for patients infected with viral genotype 1 developing significant anaemia below 100 g/L haemoglobin and a haematocrit of <30% during standard therapy to improve quality of life and sustain optimal ribavirin dose. However, the evidence supporting its use in patients with pre-existing anaemia, non-1 viral genotypes, a former relapse or nonresponse, liver transplant recipients and cardiovascular or pulmonary disease is considered insufficient.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To assess the outcomes and patterns of failure in solitary plasmacytoma (SP). METHODS AND MATERIALS: The data from 258 patients with bone (n = 206) or extramedullary (n = 52) SP without evidence of multiple myeloma (MM) were collected. A histopathologic diagnosis was obtained for all patients. Most (n = 214) of the patients received radiotherapy (RT) alone; 34 received chemotherapy and RT, and 8 surgery alone. The median radiation dose was 40 Gy. The median follow-up was 56 months (range 7-245). RESULTS: The median time to MM development was 21 months (range 2-135), with a 5-year probability of 45%. The 5-year overall survival, disease-free survival, and local control rate was 74%, 50%, and 86%, respectively. On multivariate analyses, the favorable factors were younger age and tumor size <4 cm for survival; younger age, extramedullary localization, and RT for disease-free survival; and small tumor and RT for local control. Bone localization was the only predictor of MM development. No dose-response relationship was found for doses >30 Gy, even for larger tumors. CONCLUSION: Progression to MM remains the main problem. Patients with extramedullary SP had the best outcomes, especially when treated with moderate-dose RT. Chemotherapy and/or novel therapies should be investigated for bone or bulky extramedullary SP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Retinae of aged humans show signs of vascular regression. Vascular regression involves a mismatch between Angiopoietin-2 (Ang-2) and vascular endothelial growth factor (VEGF) expression. We used heterozygous Ang-2 deficient (Ang2LacZ) mice to evaluate murine retinal vascular changes and gene expression of growth factors. Vascular changes were assessed by quantitative retinal morphometry and gene expression levels of growth factors were measured by quantitative PCR. The numbers of endothelial cells and pericytes did not change in the Ang2LacZ retinae with age, whereas they decreased throughout the age spectrum studied in the wild type retinae. Moreover, vascular regression significantly decelerated in the heterozygous Ang2LacZ retinae (200% to 1 month), while the formation of acellular capillaries was significantly increased at 13 months in the wild type retinae (340% to 1 month). Gene expression analysis revealed that VEGF, Ang-1, PDGF-B and Ang2 mRNA levels were decreased in the wild type retinae at 9 month of age. However, the decrease of Ang-2 was smaller compared with other genes. While VEGF levels dropped in wild type mice up to 60% compared to 1 month, VEGF increased in heterozygous Ang-2 deficient retinae at an age of 9 months (141% to 1 month). Similarly, Ang-1 levels decreased in wild type mice (45% to 1 month), but remained stable in Ang2LacZ mice. These data suggest that Ang-2 gene dose reduction decelerates vasoregression in the retina with age. This effect links to higher levels of survival factors such as VEGF and Ang-1, suggesting that the ratio of these factors is critical for capillary cell survival.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Indications for the most frequently used imaging modalities in implant dentistry are proposed based on clinical need and biologic risk for the patient. To calculate the biologic risk, the authors carried out dose measurements. They demonstrated that the risk from a periapical radiograph is 20% of that from a panoramic radiograph. A panoramic radiograph and a series of 4 conventional tomographs of a single-tooth gap in the molar region carry 5% and 13% of the risk from computed tomography of the maxilla, respectively. Panoramic radiography is considered the standard radiographic examination for treatment planning of implant patients, because it imparts a low dose while giving the best radiographic survey. Periapical radiographs are used to elucidate details or to complete the findings obtained from the panoramic radiograph. Other radiographic methods, such as conventional film tomography or computed tomography, are applied only in special circumstances, film tomography being preferred for smaller regions of interest and computed tomography being justified for the complete maxilla or mandible when methods for dose reduction are followed. During follow-up, intraoral radiography is considered the standard radiographic examination, particularly for implants in the anterior region of the maxilla or for scientific studies. In patients requiring more than 5 periapical images, panoramic radiography is preferred.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radiation dose delivered from the SCANORA radiography unit during the cross-sectional mode for dentotangential projections was determined. With regard to oral implantology, patient situations of an edentulous maxilla and mandible as well as a single tooth gap in regions 16 and 46 were simulated. Radiation doses were measured between 0.2 and 22.5 mGy to organs and tissues in the head and neck region when the complete maxilla or mandible was examined. When examining a single tooth gap, only 8% to 40% of that radiation dose was generally observed. Based on these results, the mortality risk was estimated according to a calculation model recommended by the Committee on the Biological Effects of Ionizing Radiations. The mortality risk ranged from 31.4 x 10(-6) for 20-year-old men to 4.8 x 10(-6) for 65-year-old women when cross-sectional imaging of the complete maxilla was performed. The values decreased by 70% when a single tooth gap in the molar region of the maxilla was radiographed. The figures for the mortality risk for examinations of the complete mandible were similar to those for the complete maxilla, but the mortality risk decreased by 80% if only a single tooth gap in the molar region of the mandible was examined. Calculations according to the International Commission on Radiological Protection carried out for comparison did not reveal the decrease of the mortality risk with age and resulted in a higher risk value in comparison to the group of 35-year old individuals in calculations according to the Committee on the Biological Effects of Ionizing Radiations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A combination of oral zidovudine (250 mg twice daily) and subcutaneous interferon-alpha (10 x 10(6) units daily) was evaluated for clinical, antiretroviral, and immunological efficacy and for side effects in 17 patients with AIDS-related Kaposi's sarcoma. Fifteen patients were evaluable. During the study period of 12 weeks, tumor responses were complete in two patients and partial in two patients (27% major response rate). Minimal responses were seen in two patients (40% overall response rate). An anti-HIV effect (reduction of serum p24 antigen by 70% or more) was observed in seven of ten evaluable patients who were initially antigenemic. CD4 lymphocyte counts remained unchanged. In six patients who had either a tumor response or a marked decline of HIV antigenemia, the treatment was continued between 12 and 59 weeks beyond the study period. Two of four patients with tumor regression at 12 weeks had an additional tumor response in this period despite prior dose reduction of interferon due to toxicity. Late progression of KS was eventually observed in four of six patients on prolonged treatment. The responsiveness of Kaposi's sarcoma seen in this study in patients with low CD4 counts and prior constitutional symptoms (fever, weight loss) was unexpected and needs further confirmation by larger patient groups. Dose-limiting toxicities were bone marrow depression (severe anemia in four and neutropenia with anemia in two patients), subjective adverse experiences (fever, fatigue, myalgia; four patients) and both (two patients).(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVES: The aim of this phantom study was to evaluate the contrast-to-noise ratio (CNR) in pulmonary computed tomography (CT)-angiography for 300 and 400 mg iodine/mL contrast media using variable x-ray tube parameters and patient sizes. We also analyzed the possible strategies of dose reduction in patients with different sizes. MATERIALS AND METHODS: The segmental pulmonary arteries were simulated by plastic tubes filled with 1:30 diluted solutions of 300 and 400 mg iodine/mL contrast media in a chest phantom mimicking thick, intermediate, and thin patients. Volume scanning was done with a CT scanner at 80, 100, 120, and 140 kVp. Tube current-time products (mAs) varied between 50 and 120% of the optimal value given by the built-in automatic dose optimization protocol. Attenuation values and CNR for both contrast media were evaluated and compared with the volume CT dose index (CTDI(vol)). Figure of merit, calculated as CNR/CTDIvol, was used to quantify image quality improvement per exposure risk to the patient. RESULTS: Attenuation of iodinated contrast media increased both with decreasing tube voltage and patient size. A CTDIvol reduction by 44% was achieved in the thin phantom with the use of 80 instead of 140 kVp without deterioration of CNR. Figure of merit correlated with kVp in the thin phantom (r = -0.897 to -0.999; P < 0.05) but not in the intermediate and thick phantoms (P = 0.09-0.71), reflecting a decreasing benefit of tube voltage reduction on image quality as the thickness of the phantom increased. Compared with the 300 mg iodine/mL concentration, the same CNR for 400 mg iodine/mL contrast medium was achieved at a lower CTDIvol by 18 to 40%, depending on phantom size and applied tube voltage. CONCLUSIONS: Low kVp protocols for pulmonary embolism are potentially advantageous especially in thin and, to a lesser extent, in intermediate patients. Thin patients profit from low voltage protocols preserving a good CNR at a lower exposure. The use of 80 kVp in obese patients may be problematic because of the limitation of the tube current available, reduced CNR, and high skin dose. The high CNR of the 400 mg iodine/mL contrast medium together with lower tube energy and/or current can be used for exposure reduction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For CT scan planning, scan projection radiographs (SPR) are used. Tube tension and current for head SPR can be reduced to a minimum because of the small head diameter and because only high-contrast structures need to be visualized for planning. The goal of this study was to investigate SPR of the head in respect to effective doses, the influence of dose-reduction measures, and comparison with conventional x-ray.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of the study was to analyse longitudinal vertical facial and dentoalveolar changes using panoramic radiographs (PRs) and to compare the results with measurements on lateral cephalometric radiographs (LCRs) in order to determine whether, under certain circumstances, the radiation dose for a patient may be reduced by taking only a PR instead of a PR and a LCR. Pre- and post-treatment PRs and LCRs of 30 (15 females and 15 males) orthodontically treated adolescents (mean age pre-treatment 10.9 years, post-treatment 13.4 years) were analysed using Pearson's correlation coefficients and gender differences using Fisher's z-transformation. The results revealed that most variables exhibited larger absolute values on PRs than on LCRs. Comparison of dentoskeletal morphology between the LCRs and the PRs revealed moderate to high, mostly statistically significant, interrelations both before and after orthodontic treatment. The lowest correlations were found for the maxillary jaw base angle (NL/H; r= 0.35***) and the highest for the gonial angle (ML/RL; r = 0.90***). However, when assessing the combined growth and treatment changes from before to after treatment, only weak to moderate, not statistically significant, interrelations were found between LCRs and PRs. Anterior face height (AFH; r = 0.43***), the mandibular plane angle (ML/H; r = 0.06*), and the distance of the incisal tip of the most extruded mandibular incisor to the ML-line (ii-ML; r = -0.21*) were the only statistically significant parameters. The average group differences for growth and treatment changes, however, were small for most parameters. Analysis of vertical facial and dentoalveolar parameters on PRs delivers a moderate approximation to the situation depicted on LCRs. However, PRs cannot be recommended for the analysis of individual longitudinal changes in vertical facial and dentoalveolar parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: The aim of this study was to assess the outcome of patients with primary spinal myxopapillary ependymoma (MPE). MATERIALS AND METHODS: Data from a series of 85 (35 females, 50 males) patients with spinal MPE were collected in this retrospective multicenter study. Thirty-eight (45%) underwent surgery only and 47 (55%) received postoperative radiotherapy (RT). Median administered radiation dose was 50.4 Gy (range, 22.2-59.4). Median follow-up of the surviving patients was 60.0 months (range, 0.2-316.6). RESULTS: The 5-year progression-free survival (PFS) was 50.4% and 74.8% for surgery only and surgery with postoperative low- (<50.4 Gy) or high-dose (>or=50.4 Gy) RT, respectively. Treatment failure was observed in 24 (28%) patients. Fifteen patients presented treatment failure at the primary site only, whereas 2 and 1 patients presented with brain and distant spinal failure only. Three and 2 patients with local failure presented with concomitant spinal distant seeding and brain failure, respectively. One patient failed simultaneously in the brain and spine. Age greater than 36 years (p = 0.01), absence of neurologic symptoms at diagnosis (p = 0.01), tumor size >or=25 mm (p = 0.04), and postoperative high-dose RT (p = 0.05) were variables predictive of improved PFS on univariate analysis. In multivariate analysis, only postoperative high-dose RT was independent predictors of PFS (p = 0.04). CONCLUSIONS: The observed pattern of failure was mainly local, but one fifth of the patients presented with a concomitant spinal or brain component. Postoperative high-dose RT appears to significantly reduce the rate of tumor progression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To determine if multi–detector row computed tomography (CT) can replace conventional radiography and be performed alone in severe trauma patients for the depiction of thoracolumbar spine fractures. MATERIALS AND METHODS: One hundred consecutive severe trauma patients who underwent conventional radiography of the thoracolumbar spine as well as thoracoabdominal multi–detector row CT were prospectively identified. Conventional radiographs were reviewed independently by three radiologists and two orthopedic surgeons; CT images were reviewed by three radiologists. Reviewers were blinded both to one another’s reviews and to the results of initial evaluation. Presence, location, and stability of fractures, as well as quality of reviewed images, were assessed. Statistical analysis was performed to determine sensitivity and interobserver agreement for each procedure, with results of clinical and radiologic follow-up as the standard of reference. The time to perform each examination and the radiation dose involved were evaluated. A resource cost analysis was performed. RESULTS: Sixty-seven fractured vertebrae were diagnosed in 26 patients. Twelve patients had unstable spine fractures. Mean sensitivity and interobserver agreement, respectively, for detection of unstable fractures were 97.2% and 0.951 for multi–detector row CT and 33.3% and 0.368 for conventional radiography. The median times to perform a conventional radiographic and a multi–detector row CT examination, respectively, were 33 and 40 minutes. Effective radiation doses at conventional radiography of the spine and thoracoabdominal multi–detector row CT, respectively, were 6.36 mSv and 19.42 mSv. Multi–detector row CT enabled identification of 146 associated traumatic lesions. The costs of conventional radiography and multi–detector row CT, respectively, were $145 and $880 per patient. CONCLUSION: Multi–detector row CT is a better examination for depicting spine fractures than conventional radiography. It can replace conventional radiography and be performed alone in patients who have sustained severe trauma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since approximately two thirds of epileptic patients are non-eligible for surgery, local axonal fiber transections might be of particular interest for them. Micrometer to millimeter wide synchrotron-generated X-ray beamlets produced by spatial fractionation of the main beam could generate such fiber disruptions non-invasively. The aim of this work was to optimize irradiation parameters for the induction of fiber transections in the rat brain white matter by exposure to such beamlets. For this purpose, we irradiated cortex and external capsule of normal rats in the antero-posterior direction with a 4 mm×4 mm array of 25 to 1000 µm wide beamlets and entrance doses of 150 Gy to 500 Gy. Axonal fiber responses were assessed with diffusion tensor imaging and fiber tractography; myelin fibers were examined histopathologically. Our study suggests that high radiation doses (500 Gy) are required to interrupt axons and myelin sheaths. However, a radiation dose of 500 Gy delivered by wide minibeams (1000 µm) induced macroscopic brain damage, depicted by a massive loss of matter in fiber tractography maps. With the same radiation dose, the damage induced by thinner microbeams (50 to 100 µm) was limited to their paths. No macroscopic necrosis was observed in the irradiated target while overt transections of myelin were detected histopathologically. Diffusivity values were found to be significantly reduced. A radiation dose ≤ 500 Gy associated with a beamlet size of < 50 µm did not cause visible transections, neither on diffusion maps nor on sections stained for myelin. We conclude that a peak dose of 500 Gy combined with a microbeam width of 100 µm optimally induced axonal transections in the white matter of the brain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a phase I clinical trial, six multiple myeloma patients, who were non-responsive to conventional therapy and were scheduled for bone marrow transplantation, received Holmium-166 ($\sp{166}$Ho) labeled to a bone seeking agent, DOTMP (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylene-phosphonic acid), for the purpose of bone marrow ablation. The specific aims of my research within this protocol were to evaluate the toxicity and efficacy of $\sp{166}$Ho DOTMP by quantifying the in vivo pharmacokinetics and radiation dosimetry, and by correlating these results to the biologic response observed. The reproducibility of pharmacokinetics from multiple injections of $\sp{166}$Ho DOTMP administered to these myeloma patients was demonstrated from both blood and whole body retention. The skeletal concentration of $\sp{166}$Ho DOTMP was heterogenous in all six patients: high in the ribs, pelvis, and lumbar vertebrae regions, and relatively low in the femurs, arms, and head.^ A novel technique was developed to calculate the radiation dose to the bone marrow in each skeletal ROI, and was applied to all six $\sp{166}$Ho DOTMP patients. Radiation dose estimates for the bone marrow calculated using the standard MIRD "S" factors were compared with the average values derived from the heterogenous distribution of activity in the skeleton (i.e., the regional technique). The results from the two techniques were significantly different; the average of the dose estimates from the regional technique were typically 30% greater. Furthermore, the regional technique provided a range of radiation doses for the entire marrow volume, while the MIRD "S" factors only provided a single value. Dose volume histogram analysis of data from the regional technique indicated a range of dose estimates that varied by a factor of 10 between the high dose and low dose regions. Finally, the observed clinical response of cells and abnormal proteins measured in bone marrow aspirates and peripheral blood samples were compared with radiation dose estimates for the bone marrow calculated from the standard and regional technique. The results showed the regional technique values correlated more closely to several clinical response parameters. (Abstract shortened by UMI.) ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The successful management of cancer with radiation relies on the accurate deposition of a prescribed dose to a prescribed anatomical volume within the patient. Treatment set-up errors are inevitable because the alignment of field shaping devices with the patient must be repeated daily up to eighty times during the course of a fractionated radiotherapy treatment. With the invention of electronic portal imaging devices (EPIDs), patient's portal images can be visualized daily in real-time after only a small fraction of the radiation dose has been delivered to each treatment field. However, the accuracy of human visual evaluation of low-contrast portal images has been found to be inadequate. The goal of this research is to develop automated image analysis tools to detect both treatment field shape errors and patient anatomy placement errors with an EPID. A moments method has been developed to align treatment field images to compensate for lack of repositioning precision of the image detector. A figure of merit has also been established to verify the shape and rotation of the treatment fields. Following proper alignment of treatment field boundaries, a cross-correlation method has been developed to detect shifts of the patient's anatomy relative to the treatment field boundary. Phantom studies showed that the moments method aligned the radiation fields to within 0.5mm of translation and 0.5$\sp\circ$ of rotation and that the cross-correlation method aligned anatomical structures inside the radiation field to within 1 mm of translation and 1$\sp\circ$ of rotation. A new procedure of generating and using digitally reconstructed radiographs (DRRs) at megavoltage energies as reference images was also investigated. The procedure allowed a direct comparison between a designed treatment portal and the actual patient setup positions detected by an EPID. Phantom studies confirmed the feasibility of the methodology. Both the moments method and the cross-correlation technique were implemented within an experimental radiotherapy picture archival and communication system (RT-PACS) and were used clinically to evaluate the setup variability of two groups of cancer patients treated with and without an alpha-cradle immobilization aid. The tools developed in this project have proven to be very effective and have played an important role in detecting patient alignment errors and field-shape errors in treatment fields formed by a multileaf collimator (MLC). ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE Glucagon-like peptide-1 receptor (GLP-1R) is a molecular target for imaging of pancreatic beta cells. We compared the ability of [Nle(14),Lys(40)(Ahx-NODAGA-(64)Cu)NH2]-exendin-4 ([(64)Cu]NODAGA-exendin-4) and [Nle(14),Lys(40)(Ahx-NODAGA-(68)Ga)NH2]-exendin-4 ([(68)Ga]NODAGA-exendin-4) to detect native pancreatic islets in rodents. PROCEDURES The stability, lipophilicity and affinity of the radiotracers to the GLP-1R were determined in vitro. The biodistribution of the tracers was assessed using autoradiography, ex vivo biodistribution and PET imaging. Estimates for human radiation dosimetry were calculated. RESULTS We found GLP-1R-specific labelling of pancreatic islets. However, the pancreas could not be visualised in PET images. The highest uptake of the tracers was observed in the kidneys. Effective dose estimates for [(64)Cu]NODAGA-exendin-4 and [(68)Ga]NODAGA-exendin-4 were 0.144 and 0.012 mSv/MBq, respectively. CONCLUSION [(64)Cu]NODAGA-exendin-4 might be more effective for labelling islets than [(68)Ga]NODAGA-exendin-4. This is probably due to the lower specific radioactivity of [(68)Ga]NODAGA-exendin-4 compared to [(64)Cu]NODAGA-exendin-4. The radiation dose in the kidneys may limit the use of [(64)Cu]NODAGA-exendin-4 as a clinical tracer.