967 resultados para Radar data
Resumo:
The Padul-Nigüelas Fault Zone (PNFZ) is situated at the south-western mountain front of the Sierra Nevada (Spain) in an extensive regime and belongs to the internal zone of the Betic Cordilleras. The aim of this study is a collection of new evidence for neotectonic activity of the fault zone with classical geological field work and modern geophysical methods, such as ground penetrating radar (GPR). Among an apparently existing bed rock fault scarp with triangular facets, other evidences, such as deeply incised valleys and faults in the colluvial wedges, are present in the PNFZ. The preliminary results of our recent field work have shown that the synsedimentary faults within the colluvial sediments seem to propagate basinwards and the bed rock fault is only exhumed due to erosion for the studied segment (west of Marchena). We will use further GPR data and geomorphologic indices to gather further evidences of neotectonic activity of the PNFZ.
Resumo:
The data set consists of maps of total velocity of surface currents in the Ibiza Channel, derived from HF radar measurements.
Resumo:
SARAL/AltiKa GDR-T are analyzed to assess the quality of the significant wave height (SWH) measurements. SARAL along-track SWH plots reveal cases of erroneous data, more or less isolated, not detected by the quality flags. The anomalies are often correlated with strong attenuation of the Ka-band backscatter coefficient, sensitive to clouds and rain. A quality test based on the 1Hz standard deviation is proposed to detect such anomalies. From buoy comparison, it is shown that SARAL SWH is more accurate than Jason-2, particularly at low SWH, and globally does not require any correction. Results are better with open ocean than with coastal buoys. The scatter and the number of outliers are much larger for coastal buoys. SARAL is then compared with Jason-2 and Cryosat-2. The altimeter data are extracted from the global altimeter SWH Ifremer data base, including specific corrections to calibrate the various altimeters. The comparison confirms the high quality of SARAL SWH. The 1Hz standard deviation is much less than for Jason-2 and Cryosat-2, particularly at low SWH. Furthermore, results show that the corrections applied to Jason-2 and to Cryosat-2, in the data base, are efficient, improving the global agreement between the three altimeters.
Resumo:
Traditionally, densities of newly built roadways are checked by direct sampling (cores) or by nuclear density gauge measurements. For roadway engineers, density of asphalt pavement surfaces is essential to determine pavement quality. Unfortunately, field measurements of density by direct sampling or by nuclear measurement are slow processes. Therefore, I have explored the use of rapidly-deployed ground penetrating radar (GPR) as an alternative means of determining pavement quality. The dielectric constant of pavement surface may be a substructure parameter that correlates with pavement density, and can be used as a proxy when density of asphalt is not known from nuclear or destructive methods. The dielectric constant of the asphalt can be determined using ground penetrating radar (GPR). In order to use GPR for evaluation of road surface quality, the relationship between dielectric constants of asphalt and their densities must be established. Field measurements of GPR were taken at four highway sites in Houghton and Keweenaw Counties, Michigan, where density values were also obtained using nuclear methods in the field. Laboratory studies involved asphalt samples taken from the field sites and samples created in the laboratory. These were tested in various ways, including, density, thickness, and time domain reflectometry (TDR). In the field, GPR data was acquired using a 1000 MHz air-launched unit and a ground-coupled unit at 200 and 500 MHz. The equipment used was owned and operated by the Michigan Department of Transportation (MDOT) and available for this study for a total of four days during summer 2005 and spring 2006. The analysis of the reflected waveforms included “routine” processing for velocity using commercial software and direct evaluation of reflection coefficients to determine a dielectric constant. The dielectric constants computed from velocities do not agree well with those obtained from reflection coefficients. Perhaps due to the limited range of asphalt types studied, no correlation between density and dielectric constant was evident. Laboratory measurements were taken with samples removed from the field and samples created for this study. Samples from the field were studied using TDR, in order to obtain dielectric constant directly, and these correlated well with the estimates made from reflection coefficients. Samples created in the laboratory were measured using 1000 MHz air-launched GPR, and 400 MHz ground-coupled GPR, each under both wet and dry conditions. On the basis of these observations, I conclude that dielectric constant of asphalt can be reliably measured from waveform amplitude analysis of GJPR data, based on the consistent agreement with that obtained in the laboratory using TDR. Because of the uniformity of asphalts studied here, any correlation between dielectric constant and density is not yet apparent.
Resumo:
Résumé : La texture dispose d’un bon potentiel discriminant qui complète celui des paramètres radiométriques dans le processus de classification d’image. L’indice Compact Texture Unit (CTU) multibande, récemment mis au point par Safia et He (2014), permet d’extraire la texture sur plusieurs bandes à la fois, donc de tirer parti d’un surcroît d’informations ignorées jusqu’ici dans les analyses texturales traditionnelles : l’interdépendance entre les bandes. Toutefois, ce nouvel outil n’a pas encore été testé sur des images multisources, usage qui peut se révéler d’un grand intérêt quand on considère par exemple toute la richesse texturale que le radar peut apporter en supplément à l’optique, par combinaison de données. Cette étude permet donc de compléter la validation initiée par Safia (2014) en appliquant le CTU sur un couple d’images optique-radar. L’analyse texturale de ce jeu de données a permis de générer une image en « texture couleur ». Ces bandes texturales créées sont à nouveau combinées avec les bandes initiales de l’optique, avant d’être intégrées dans un processus de classification de l’occupation du sol sous eCognition. Le même procédé de classification (mais sans CTU) est appliqué respectivement sur : la donnée Optique, puis le Radar, et enfin la combinaison Optique-Radar. Par ailleurs le CTU généré sur l’Optique uniquement (monosource) est comparé à celui dérivant du couple Optique-Radar (multisources). L’analyse du pouvoir séparateur de ces différentes bandes à partir d’histogrammes, ainsi que l’outil matrice de confusion, permet de confronter la performance de ces différents cas de figure et paramètres utilisés. Ces éléments de comparaison présentent le CTU, et notamment le CTU multisources, comme le critère le plus discriminant ; sa présence rajoute de la variabilité dans l’image permettant ainsi une segmentation plus nette, une classification à la fois plus détaillée et plus performante. En effet, la précision passe de 0.5 avec l’image Optique à 0.74 pour l’image CTU, alors que la confusion diminue en passant de 0.30 (dans l’Optique) à 0.02 (dans le CTU).
Resumo:
Recent data indicate that levels of overweight and obesity are increasing at an alarming rate throughout the world. At a population level (and commonly to assess individual health risk), the prevalence of overweight and obesity is calculated using cut-offs of the Body Mass Index (BMI) derived from height and weight. Similarly, the BMI is also used to classify individuals and to provide a notional indication of potential health risk. It is likely that epidemiologic surveys that are reliant on BMI as a measure of adiposity will overestimate the number of individuals in the overweight (and slightly obese) categories. This tendency to misclassify individuals may be more pronounced in athletic populations or groups in which the proportion of more active individuals is higher. This differential is most pronounced in sports where it is advantageous to have a high BMI (but not necessarily high fatness). To illustrate this point we calculated the BMIs of international professional rugby players from the four teams involved in the semi-finals of the 2003 Rugby Union World Cup. According to the World Health Organisation (WHO) cut-offs for BMI, approximately 65% of the players were classified as overweight and approximately 25% as obese. These findings demonstrate that a high BMI is commonplace (and a potentially desirable attribute for sport performance) in professional rugby players. An unanswered question is what proportion of the wider population, classified as overweight (or obese) according to the BMI, is misclassified according to both fatness and health risk? It is evident that being overweight should not be an obstacle to a physically active lifestyle. Similarly, a reliance on BMI alone may misclassify a number of individuals who might otherwise have been automatically considered fat and/or unfit.
Resumo:
In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.