987 resultados para Radar cross-section prediction
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work is conducted to study the complications associated with the sonic log prediction in carbonate logs and to investigate the possible solutions to accurately predict the sonic logs in Traverse Limestone. Well logs from fifty different wells were analyzed to define the mineralogy of the Traverse Limestone by using conventional 4-mineral and 3-mineral identification approaches. We modified the conventional 3-mineral identification approach (that completely neglects the gamma ray response) to correct the shale effects on the basis of gamma ray log before employing the 3-mineral identification. This modification helped to get the meaningful insight of the data when a plot was made between DGA (dry grain density) and UMA (Photoelectric Volumetric Cross-section) with the characteristic ternary diagram of the quartz, calcite and dolomite. The results were then compared with the 4-mineral identification approach. Contour maps of the average mineral fractions present in the Traverse Limestone were prepared to see the basin wide mineralogy of Traverse Limestone. In the second part, sonic response of Traverse Limestone was predicted in fifty randomly distributed wells. We used the modified time average equation that accounts for the shale effects on the basis of gamma ray log, and used it to predict the sonic behavior from density porosity and average porosity. To account for the secondary porosity of dolomite, we subtracted the dolomitic fraction of clean porosity from the total porosity. The pseudo-sonic logs were then compared with the measured sonic logs on the root mean square (RMS) basis. Addition of dolomite correction in modified time average equation improved the results of sonic prediction from neutron porosity and average porosity. The results demonstrated that sonic logs could be predicted in carbonate rocks with a root mean square error of about 4μsec/ft. We also attempted the use of individual mineral components for sonic log prediction but the ambiguities in mineral fractions and in the sonic properties of the minerals limited the accuracy of the results.
Resumo:
Determining as accurate as possible spent nuclear fuel isotopic content is gaining importance due to its safety and economic implications. Since nowadays higher burn ups are achievable through increasing initial enrichments, more efficient burn up strategies within the reactor cores and the extension of the irradiation periods, establishing and improving computation methodologies is mandatory in order to carry out reliable criticality and isotopic prediction calculations. Several codes (WIMSD5, SERPENT 1.1.7, SCALE 6.0, MONTEBURNS 2.0 and MCNP-ACAB) and methodologies are tested here and compared to consolidated benchmarks (OECD/NEA pin cell moderated with light water) with the purpose of validating them and reviewing the state of the isotopic prediction capabilities. These preliminary comparisons will suggest what can be generally expected of these codes when applied to real problems. In the present paper, SCALE 6.0 and MONTEBURNS 2.0 are used to model the same reported geometries, material compositions and burn up history of the Spanish Van de llós II reactor cycles 7-11 and to reproduce measured isotopies after irradiation and decay times. We analyze comparisons between measurements and each code results for several grades of geometrical modelization detail, using different libraries and cross-section treatment methodologies. The power and flux normalization method implemented in MONTEBURNS 2.0 is discussed and a new normalization strategy is developed to deal with the selected and similar problems, further options are included to reproduce temperature distributions of the materials within the fuel assemblies and it is introduced a new code to automate series of simulations and manage material information between them. In order to have a realistic confidence level in the prediction of spent fuel isotopic content, we have estimated uncertainties using our MCNP-ACAB system. This depletion code, which combines the neutron transport code MCNP and the inventory code ACAB, propagates the uncertainties in the nuclide inventory assessing the potential impact of uncertainties in the basic nuclear data: cross-section, decay data and fission yields
Resumo:
Contributing to the evaluation of seismic hazards, a previously unmapped strand of the Seattle Fault Zone (SFZ), cutting across the southwest side of Lake Washington and southeast Seattle, is located and characterized on the basis of bathymetry, borehole logs, and ground penetrating radar (GPR). Previous geologic mapping and geophysical analysis of the Seattle area have generally mapped the locations of some strands of the SFZ, though a complete and accurate understanding of locations of all individual strands of the fault system is still incomplete. A bathymetric scarp-like feature and co-linear aeromagnetic anomaly lineament defined the extent of the study area. A 2-dimensional lithology cross-section was constructed using six boreholes, chosen from suitable boreholes in the study area. In addition, two GPR transects, oblique to the proposed fault trend, served to identify physical differences in subsurface materials. The proposed fault trace follows the previously mapped contact between the Oligocene Blakeley Formation and Quaternary deposits, and topographic changes in slope. GPR profiles in Seward Park and across the proposed fault location show the contact between the Blakeley Formation and unconsolidated glacial deposits, but it does not constrain an offset. However, north-dipping beds in the Blakely Formation are consistent with previous interpretations of P-wave seismic profiles on Mercer Island and Bellevue, Washington. The profiles show the mapped location of the aeromagnetic lineament in Lake Washington and the inferred location of the steeply-dipping, high-amplitude bedrock reflector, representing a fault strand. This north-dipping reflector is likely the same feature identified in my analysis. I characterize the strand as a splay fault, antithetic to the frontal fault of the SFZ. This new fault may pose a geologic hazard to the region.
Resumo:
Feature selection is important in medical field for many reasons. However, selecting important variables is a difficult task with the presence of censoring that is a unique feature in survival data analysis. This paper proposed an approach to deal with the censoring problem in endovascular aortic repair survival data through Bayesian networks. It was merged and embedded with a hybrid feature selection process that combines cox's univariate analysis with machine learning approaches such as ensemble artificial neural networks to select the most relevant predictive variables. The proposed algorithm was compared with common survival variable selection approaches such as; least absolute shrinkage and selection operator LASSO, and Akaike information criterion AIC methods. The results showed that it was capable of dealing with high censoring in the datasets. Moreover, ensemble classifiers increased the area under the roc curves of the two datasets collected from two centers located in United Kingdom separately. Furthermore, ensembles constructed with center 1 enhanced the concordance index of center 2 prediction compared to the model built with a single network. Although the size of the final reduced model using the neural networks and its ensembles is greater than other methods, the model outperformed the others in both concordance index and sensitivity for center 2 prediction. This indicates the reduced model is more powerful for cross center prediction.
Resumo:
Previous earthquakes showed that shear wall damage could lead to catastrophic failures of the reinforced concrete building. The lateral load capacity of shear walls needs to be estimated to minimize associated losses during catastrophic events; hence it is necessary to develop and validate reliable and stable numerical methods able to converge to reasonable estimations with minimum computational effort. The beam-column 1-D line element with fiber-type cross-section model is a practical option that yields results in agreement with experimental data. However, shortcomings of using this model to predict the local damage response may come from the fact that the model requires fine calibration of material properties to overcome regularization and size effects. To reduce the mesh-dependency of the numerical model, a regularization method based on the concept of post-yield energy is applied in this work to both the concrete and the steel material constitutive laws to predict the nonlinear cyclic response and failure mechanism of concrete shear walls. Different categories of wall specimens known to produce a different response under in plane cyclic loading for their varied geometric and detailing characteristics are considered in this study, namely: 1) scaled wall specimens designed according to the European seismic design code and 2) unique full-scale wall specimens detailed according to the U.S. design code to develop a ductile behavior under cyclic loading. To test the boundaries of application of the proposed method, two full-scale walls with a mixed shear-flexure response and different values of applied axial load are also considered. The results of this study show that the use of regularized constitutive models considerably enhances the response predictions capabilities of the model with regards to global force-drift response and failure mode. The simulations presented in this thesis demonstrate the proposed model to be a valuable tool for researchers and engineers.
Resumo:
We propose a simple model for the total pp/p (p) over bar cross-section, which is a generalization of the minijet model with the inclusion of a window in the pT-spectrum associated to the saturation physics. Our model implies a natural cutoff for the perturbative calculations which modifies the energy behavior of this component, so that it satisfies the Froissart bound. Including the saturated component, we obtain a satisfactory description of the very high energy experimental data.
Resumo:
Elastic scattering of (8)B, (7)Be, and (6)Li on a (58)Ni target has been measured at energies near the Coulomb barrier. Optical-model fits were made to the experimental angular distributions, and total reaction cross sections were deduced. A comparison with other systems provides striking evidence for proton-halo effects on (8)B reactions. As opposed to the situation for the neutron-halo nucleus (6)He, for which particle transfer dominates, the ""extra"" cross section observed for (8)B appears to result entirely from projectile breakup.
Resumo:
This paper presents an experimental analysis of the confinement effects in steel-concrete composite columns regarding two parameters: concrete compressive strength and column slenderness. Sixteen concrete-filled steel tubular columns with circular cross section were tested under axial loading. The tested columns were filled by concrete with compressive strengths of 30, 60. 80, and 100 MPa, and had length/diameter ratios of 3, 5, 7, and 10. The experimental values of the columns` ultimate load were compared to the predictions of 4 code provisions: the Brazilian Code NBR 8800:2008, Eurocode 4 (EN 1994-1-1:2004), AINSI/AISC 360:2005, and CAN/CSA S16-01:2001. According to the results, the load capacity of the composite columns increased with increasing concrete strength and decreased with increasing length/diameter ratio. In general, the code provisions were highly accurate in the prediction of column capacity. Among them, the Brazilian Code was the most conservative, while Eurocode 4 presented the values closest to the experimental results. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
As nuclear magnetic resonance imaging and spectroscopy move inexorably toward higher field-strength magnets in search of improved signal-to-noise ratio, spectral resolution, and spatial resolution, the way in which radiofrequency (RF) probes are designed changes. At higher frequencies, resonant cavities become the favored RF ''coil'' type and may be built using streamline elements to reduce the inductance of the system. In modeling such systems, the quasi-static approach of assuming that current flows evenly in all conductor cross sections and that adjacent conductors do not affect each other becomes less reasonable. The proximity of RF conductors in resonators typically causes RF eddy currents to flow, whereby the current density in each rung is altered by the RF fields generated by nearby conductors. The proper understanding and prediction of how resonators will perform require a model of the current densities flowing in conducting sections, including all RF eddy current effects. Very few models of this type have been presented in the literature. This article presents an overview of one such model and of how it may be applied to a variety of resonators, both shielded and unshielded, circular, and elliptical, in cross section. Results are presented from a shielded head coil operating at 2 tesla. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Atelectasis after either vaginal or Caesarean delivery has not been adequately quantified. This study addresses the hypothesis that atelectasis may be worse in women who undergo Caesarean section when compared with vaginal delivery under regional anaesthesia. Twenty healthy non-smoking women submitted to a chest computed tomography (CT) 2 h after delivery in a University Hospital, who had experienced vaginal delivery (n=10) under combined spinal-epidural analgesia or a Caesarean section (n=10) under spinal anaesthesia, were evaluated. The percentage cross-sectional area of atelectasis in dependent lung regions were measured from the CT images obtained at cross-section of the xiphoid process and the top of the diaphragm. The percentage cross-sectional area of atelectasis was 3.95% in the vaginal delivery group and 14.1% in the Caesarean group (P < 0.001, Mann-Whitney rank sum test). These results suggested that pulmonary atelectasis is greater after Caesarean section delivery under spinal anaesthesia than after vaginal delivery with combined spinal-epidural analgesia.
Resumo:
Background: Previous studies have reported an association between executive dysfunction and the ability to perform activities of daily living (ADL)s among older adults. This study aims to examine the association between executive functions and functional status in a cross-section of older adults with varying degrees of cognitive impairment. Methods: 89 individuals (mean age 73.8 years) were recruited at a memory clinic in Sao Paulo, Brazil. Subjects underwent evaluation, and were allocated into three diagnostic groups according to cognitive status: normal controls (NC, n = 32), mild cognitive impairment (MCI, n = 3 1) and mild Alzheimer`s disease (AD, n=26). Executive functions were assessed with the 25-item Executive Interview (EXIT25), and functional status was measured with the Direct Assessment of Functional Status test (DAFS-R). Results: Significantly different total DAFS-R scores were observed across the three diagnostic groups. Patients with AD performed significantly worse in EXIT25 compared with subjects without dementia, and no significant differences were detected between NC and MCI patients. We found a robust negative correlation between the DAFS-R and the EXIT25 scores (r=-0.872, p < 0.001). Linear regression analyses suggested a significant influence of the EXIT-25 and the CAMCOG on the DAFS-R scores. Conclusion: Executive dysfunction and decline in general measures of cognitive functioning are associated with a lower ability to undertake instrumental ADLs. MCI patients showed worse functional status than NC subjects. MCI patients may show subtle changes in functional status that may only be captured by objective measures of ADLs.
Resumo:
Described in this article is a novel device that facilitates study of the cross-sectional anatomy of the human head. In designing our device, we aimed to protect sections of the head from the destructive action of handling during anatomy laboratory while also ensuring excellent visualization of the anatomic structures. We used an electric saw to create 15-mm sections of three cadaver heads in the three traditional anatomic planes and inserted each section into a thin, perforated display box made of transparent acrylic material. The thin display boxes with head sections are kept in anatomical order in a larger transparent acrylic storage box containing formaldehyde solution, which preserves the specimens but also permits direct observation of the structures and their anatomic relationships to each other. This box-within-box design allows students to easily view sections of a head in its anatomical position as well as to examine internal structures by manipulating individual display boxes without altering the integrity of the preparations. This methodology for demonstrating cross-section anatomy allows efficient use of cadaveric material and technician time while also giving learners the best possible handling and visualization of complex anatomic structures. Our approach to teaching cross-sectional anatomy of the head can be applied to any part of human body, and the value of our device design will only increase as more complicated understandings of cross-sectional anatomy are required by advances and proliferation of imaging technology. Anat Sci Educ 3: 141-143, 2010. (C) 2010 American Association of Anatomists.
Resumo:
The Tevatron has measured a discrepancy relative to the standard model prediction in the forward-backward asymmetry in top quark pair production. This asymmetry grows with the rapidity difference of the two top quarks. It also increases with the invariant mass of the t (t) over bar pair, reaching, for high invariant masses, 3.4 standard deviations above the next-to-leading order prediction for the charge asymmetry of QCD. However, perfect agreement between experiment and the standard model was found in both total and differential cross section of top quark pair production. As this result could be a sign of new physics we have parametrized this new physics in terms of a complete set of dimension six operators involving the top quark. We have then used a Markov chain Monte Carlo approach in order to find the best set of parameters that fits the data, using all available data regarding top quark pair production at the Tevatron. We have found that just a very small number of operators are able to fit the data better than the standard model.
Resumo:
The reinforcement mechanisms at the cross section level assured by fibres bridging the cracks in steel fibre reinforced self-compacting concrete (SFRSCC) can be significantly amplified at structural level when the SFRSCC is applied in structures with high support redundancy, such is the case of elevated slab systems. To evaluate the potentialities of SFRSCC as the fundamental material of elevated slab systems, a ¼ scale SFRSCC prototype of a residential building was designed, built and tested. The extensive experimental program includes material tests for characterizing the relevant properties of SFRSCC, as well as structural tests for assessing the performance of the prototype at serviceability and ultimate limit conditions. Three distinct approaches where adopted to derive the constitutive laws of the SFRSCC in tension that were used in finite element material nonlinear analysis to evaluate the reliability of these approaches in the prediction of the load carrying capacity of the prototype.