935 resultados para RNA analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the development of the somatic genome from the Paramecium germline genome the bulk of the copies of ∼45 000 unique, internal eliminated sequences (IESs) are deleted. IES targeting is facilitated by two small RNA (sRNA) classes: scnRNAs, which relay epigenetic information from the parental nucleus to the developing nucleus, and iesRNAs, which are produced and used in the developing nucleus. Why only certain IESs require sRNAs for their removal has been enigmatic. By analyzing the silencing effects of three genes: PGM (responsible for DNA excision), DCL2/3 (scnRNA production) and DCL5 (iesRNA production), we identify key properties required for IES elimination. Based on these results, we propose that, depending on the exact combination of their lengths and end bases, some IESs are less efficiently recognized or excised and have a greater requirement for targeting by scnRNAs and iesRNAs. We suggest that the variation in IES retention following silencing of DCL2/3 is not primarily due to scnRNA density, which is comparatively uniform relative to IES retention, but rather the genetic properties of IESs. Taken together, our analyses demonstrate that in Paramecium the underlying genetic properties of developmentally deleted DNA sequences are essential in determining the sensitivity of these sequences to epigenetic control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed protein of the hnRNP family, that has been discovered as fused to transcription factors in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis [Vance C. et al., 2009]. FUS is a 53 kDa nuclear protein that contains structural domains, such as a RNA Recognition Motif (RRM) and a zinc finger motif, that give to FUS the ability to bind to both RNA and DNA sequences. It has been implicated in a variety of cellular processes, such as pre-mRNA splicing, miRNA processing, gene expression control and transcriptional regulation [Fiesel FC. and Kahle PJ., 2011]. Moreover, some evidences link FUS to genome stability control and DNA damage response: mice lacking FUS are hypersensitive to ionizing radiation (IR) and show high levels of chromosome instability and, in response to double-strand breaks, FUS is phosphorylated by the protein kinase ATM [Kuroda M. et al., 2000; Hicks GG. et al., 2000; Gardiner M. et al., 2008]. Furthermore, preliminary results of mass spectrometric identification of FUS interacting proteins in HEK293 cells, expressing a recombinant flag-tagged FUS protein, highlighted the interactions with proteins involved in DNA damage response, such as DNA-PK, XRCC-5/-6, and ERCC-6, raising the possibilities that FUS is involved in this pathway, even though its role still needs to be clarified. This study aims to investigate the biological roles of FUS in human cells and in particular the putative role in DNA damage response through the characterization of the proteomic profile of the neuroblastoma cell line SH-SY5Y upon FUS inducible depletion, by a quantitative proteomic approach. The SH-SY5Y cell line that will be used in this study expresses, in presence of tetracycline, a shRNA that targets FUS mRNA, leading to FUS protein depletion (SH-SY5Y FUS iKD cells). To quantify changes in proteins expression levels a SILAC strategy (Stable Isotope Labeling by Amino acids in Cell culture) will be conducted on SH-SY5Y FUS iKD cells and a control SH-SY5Y cell line (that expresses a mock shRNA) and the relative changes in proteins levels will be evaluated after five and seven days upon FUS depletion, by nanoliquid chromatography coupled to tandem mass spectrometry (nLC-MS/MS) and bioinformatics analysis. Preliminary experiments demonstrated that the SH-SY5Y FUS iKD cells, when subjected to genotoxic stress (high dose of IR), upon inducible depletion of FUS, showed a increased phosphorylation of gH2AX with respect to control cells, suggesting an higher activation of the DNA damage response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-protein-coding RNAs are a functionally versatile class of transcripts found in all domains of life exerting their biological role at the RNA level. Recently, we demonstrated that the vault-associated RNAs (vtRNAs) were significantly up-regulated in human B cells upon Epstein-Barr virus (EBV) infection [1,2]. vtRNAs are an integral part of the vault complex, a huge and evolutionarily conserved cytoplasmic ribonucleoprotein complex. The major vault protein (MVP) is the main structural component of the complex while vtRNA accounts for only 5% of its mass. Very little is known about the function(s) of the vtRNAs or the vault complex. In particular the role and significance of the previously observed vtRNA up-regulation upon EBV infection remained unclear. We individually expressed EBV-encoded genes in B cells and found the latent membrane protein 1 (LMP1) as trigger for vtRNA up-regulation. To unravel a putative functional interconnection between vtRNA expression and EBV infection, we ectopically expressed vtRNA1-1 in human B cells and observed an improved viral establishment. Furthermore, expression of vtRNA1-1 but not of the other vtRNA paralogs protected cells from undergoing apoptosis. Knock-down of MVP had no effect on these phenotypes thus revealing the vtRNA and not the vault complex to contribute to the enhanced EBV establishment and apoptosis resistance. Mutational analysis highlighted the central domain of the vtRNA to be involved in the anti-apoptotic effect. Ongoing research aims at characterizing the target of vtRNA1-1 in the apoptotic pathway. In summary, our data reveal a crucial cellular function for the so far elusive RNA biology of the vtRNAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of chimaeric DNA/RNA triplex-forming oligonucleotides (TFOs) with identical base-sequence but varying sequential composition of the sugar residues were prepared. The structural, kinetic and thermodynamic properties of triplex formation with their corresponding double-helical DNA target were investigated by spectroscopic methods. Kinetic and thermodynamic data were obtained from analysis of non-equilibrium UV-melting- and annealing curves in the range of pH 5.1 to 6.7 in a 10 mM citrate/phosphate buffer containing 0.1M NaCl and 1 mM EDTA. It was found that already single substitutions of ribo- for deoxyribonucleotides in the TFOs greatly affect stability and kinetics of triplex formation in a strongly sequence dependent manner. Within the sequence context investigated, triplex stability was found to increase when deoxyribonucleotides were present at the 5'-side and ribonucleotides in the center of the TFO. Especially the substitution of thymidines for uridines in the TFO was found to accelerate both, the association and dissociation process, in a strongly position-dependent way. Differential structural information on triplexes and TFO single-strands was obtained from CD-spectroscopy and gel mobility experiments. Only minor changes were observed in the CD spectra of the triplexes at all pH values investigated, and the electrophoretic mobility was nearly identical in all cases, indicating a high degree of structural similarity. In contrast, the single-stranded TFOs showed high structural variability as determined in the same way. The results are discussed in the context of the design of TFOs for therapeutic or biochemical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Cell-free foetal haemoglobin (HbF) has been shown to play a role in the pathology of preeclampsia (PE). In the present study, we aimed to further characterize the harmful effects of extracellular free haemoglobin (Hb) on the placenta. In particular, we investigated whether cell-free Hb affects the release of placental syncytiotrophoblast vesicles (STBMs) and their micro-RNA content. METHODS The dual ex-vivo perfusion system was used to perfuse isolated cotyledons from human placenta, with medium alone (control) or supplemented with cell-free Hb. Perfusion medium from the maternal side of the placenta was collected at the end of all perfusion phases. The STBMs were isolated using ultra-centrifugation, at 10,000×g and 150,000×g (referred to as 10K and 150K STBMs). The STBMs were characterized using the nanoparticle tracking analysis, identification of surface markers and transmission electron microscopy. RNA was extracted and nine different micro-RNAs, related to hypoxia, PE and Hb synthesis, were selected for analysis by quantitative PCR. RESULTS All micro-RNAs investigated were present in the STBMs. Mir-517a, mir-141 and mir-517b were down regulated after Hb perfusion in the 10K STBMs. Furthermore, Hb was shown to be carried by the STBMs. CONCLUSION This study showed that Hb perfusion can alter the micro-RNA content of released STBMs. Of particular interest is the alteration of two placenta specific micro-RNAs; mir-517a and mir-517b. We have also seen that STBMs may function as carriers of Hb into the maternal circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When a firearm projectile hits a biological target a spray of biological material (e.g., blood and tissue fragments) can be propelled from the entrance wound back towards the firearm. This phenomenon has become known as "backspatter" and if caused by contact shots or shots from short distances traces of backspatter may reach, consolidate on, and be recovered from, the inside surfaces of the firearm. Thus, a comprehensive investigation of firearm-related crimes must not only comprise of wound ballistic assessment but also backspatter analysis, and may even take into account potential correlations between these emergences. The aim of the present study was to evaluate and expand the applicability of the "triple contrast" method by probing its compatibility with forensic analysis of nuclear and mitochondrial DNA and the simultaneous investigation of co-extracted mRNA and miRNA from backspatter collected from internal components of different types of firearms after experimental shootings. We demonstrate that "triple contrast" stained biological samples collected from the inside surfaces of firearms are amenable to forensic co-analysis of DNA and RNA and permit sequence analysis of the entire mtDNA displacement-loop, even for "low template" DNA amounts that preclude standard short tandem repeat DNA analysis. Our findings underscore the "triple contrast" method's usefulness as a research tool in experimental forensic ballistics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Histone pre-mRNA 3' processing is controlled by a hairpin element preceding the processing site that interacts with a hairpin-binding protein (HBP) and a downstream spacer element that serves as anchoring site for the U7 snRNP. In addition, the nucleotides following the hairpin and surrounding the processing site (ACCCA'CA) are conserved among vertebrate histone genes. Single to triple nucleotide mutations of this sequence were tested for their ability to be processed in nuclear extract from animal cells. Changing the first four nucleotides had no qualitative and little if any quantitative effects on histone RNA 3' processing in mouse K21 cell extract, where processing of this gene is virtually independent of the HBP. A gel mobility shift assay revealing HBP interactions and a processing assay in HeLa cell extract (where the contribution of HBP to efficient processing is more important) showed that only one of these mutations, predicted to extend the hairpin by one base pair, affected the interaction with HBP. Mutations in the next three nucleotides affected both the cleavage efficiency and the choice of processing sites. Analysis of these novel sites indicated a preference for the nucleotide 5' of the cleavage site in the order A > C > U > G. Moreover, a guanosine in the 3' position inhibited cleavage. The preference for an A is shared with the cleavage/polyadenylation reaction, but the preference order for the other nucleotides is different [Chen F, MacDonald CC, Wilusz J, 1995, Nucleic Acids Res 23:2614-2620].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hairpin structure at the 3' end of animal histone mRNAs controls histone RNA 3' processing, nucleocytoplasmic transport, translation and stability of histone mRNA. Functionally overlapping, if not identical, proteins binding to the histone RNA hairpin have been identified in nuclear and polysomal extracts. Our own results indicated that these hairpin binding proteins (HBPs) bind their target RNA as monomers and that the resulting ribonucleoprotein complexes are extremely stable. These features prompted us to select for HBP-encoding human cDNAs by RNA-mediated three-hybrid selection in Saccharomyces cerevesiae. Whole cell extract from one selected clone contained a Gal4 fusion protein that interacted with histone hairpin RNA in a sequence- and structure-specific manner similar to a fraction enriched for bovine HBP, indicating that the cDNA encoded HBP. DNA sequence analysis revealed that the coding sequence did not contain any known RNA binding motifs. The HBP gene is composed of eight exons covering 19.5 kb on the short arm of chromosome 4. Translation of the HBP open reading frame in vitro produced a 43 kDa protein with RNA binding specificity identical to murine or bovine HBP. In addition, recombinant HBP expressed in S. cerevisiae was functional in histone pre-mRNA processing, confirming that we have indeed identified the human HBP gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discectomy and spinal fusion is the gold standard for spinal surgery to relieve pain. However, fusion can be hindered for yet unknown reasons that lead to non-fusions with pseudo-arthrosis. Clinical observations indicate that presence of residual intervertebral disc (IVD) tissue might hinder the ossification. We hypothesize that BMP-antagonists are constantly secreted by IVD cells and potentially prevent the ossification process. Furthermore, L51P, the engineered BMP2 variant, stimulates osseo-induction of bone marrow-derived mesenchymal stem cells (MSC) by antagonizing BMP-inhibitors. Human MSCs, primary nucleus pulposus (NPC) and annulus pulposus cells (AFC) were isolated and expanded in monolayer cultures up to passage 3. IVD cells were seeded in 1.2% alginate beads (4Mio/mL) and separated by culture inserts from MSCs. MSCs were kept in 1:control medium, 2:osteogenic medium±alginate beads, 3:osteogenic medium+NPC (±L51P) and 4:osteogenic medium+AFC (±L51P) for 21 days. Relative gene expression of bone-related genes, alkaline phosphatase assay and histological staining were performed. Osteogenesis of MSCs was hindered as shown by reduced alizarin red staining in the presence of NPC. No such inhibition was observed if co-cultured with alginate only or in the presence of AFC. The results were confirmed on the RNA and protein level. Addition of L51Pto the co- cultures, however, induced mineralization of MSCs in presence of NPC. We demonstrated that NPC secrete BMP-antagonists that prevent osteogenesis of MSCs and L51P can antagonize BMP-antagonists and induce bone formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucagon is a 29 amino acid polypeptide hormone produced in the (alpha) cells of the pancreatic islets. The purpose of this research was to understand better the role of glucagon in the regulation of metabolic processes. As with other polypeptide hormones, the synthesis of glucagon is thought to involve a larger precursor, which is then enzymatically cleaved to the functional form. The specific research objectives were to obtain cloned copies of the messenger RNA (mRNA) for pancreatic glucagon, to determine their primary sequences, and from this coding information to deduce the amino acid sequence of the initial glucagon precursor. From this suggested preproglucagon sequence and prior information on possible proglucagon intermediate processing products, the overall objective of this research is to propose a possible pathway for the biosynthesis of pancreatic glucagon.^ Synthetic oligodeoxynucleotide probes of 14-nucleotides (14-mer) and 17-nucleotides (a 17-mer) complementary to codons specifying a unique sequence of mature glucagon were synthesized. The ('32)P-labeled-14-mer was hybridized with size-fractionated fetal bovine pancreatic poly(A('+))RNA bound to nitrocellulose. RNA fractions of (TURN)14S were found to hybridize specifically, resulting in an (TURN)10-fold enrichment for these sequences. These poly(A('+))RNAs were translated in a cell-free system and the products analyzed by gel electrophoresis. The translation products were found to be enriched for a protein of the putative size of mammalian preproglucagon ((TURN)21 kd). These enriched RNA fractions were used to construct a complementary DNA (cDNA) library is plasmid pBR322.^ Screening of duplicate colony filters with the ('32)P-labeled-17-mer and a ('32)P-labeled-17-mer-primed cDNA probe indicated 25 possible glucagon clones from 3100 colonies screened. Restriction mapping of 6 of these clones suggested that they represented a single mRNA species. Primary sequence analysis of one clone containing a 1200 base pair DNA insert revealed that it contained essentially a full-length copy of glucagon cDNA.^ Analaysis of the cDNA suggested that it encoded an initial translation product of 180 amino acids with an M(,r) = 21 kd. The first initiation codon (ATG, methionine) followed by the longest open reading frame of 540 nucleotides was preceded by a 5'-untranslated region of 90 nucleotides, and was followed by a longer 3'-untranslated region of 471 nucleotides, resulting in a total of 1101 nucleotides. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the work performed in this dissertation was to examine some of the possible regulatory mechanisms involved in the initiation of muscular atrophy during periods of decreased muscle utilization resulting from hindlimb immobilization in the rat. A 37% decrease in the rate of total muscle protein synthesis which has been observed to occur in the first 6 h of immobilization contributes significantly to the observed loss of protein during immobilization.^ The rates of cytochrome c and actin synthesis were determined in adult rat red vastus lateralis and gastrocnemius muscles, respectively, by the constant infusion and incorporation of ('3)H-tyrosine into protein. The fractional synthesis rates of both actin and cytochrome c were significantly decreased (P < 0.05) in the 6th h of hindlimb immobilization.^ RHA was extracted from adult rat gastrocnemius muscle by modification of the phenol: chloroform: SDS extraction procedures commonly used for preparation of RNA for hybridization analysis from other mammalian tissues. RNA content of rat gastrocnemius muscle, as determined by this method of extraction and its subsequent quantification by UV absorbance and orcinol assay, was significantly greater than the RNA content previously determined for adult rat gastrocnemius by other commonly employed methods.^ RNA extracted by this method from gastrocnemius muscles of control and 6h immobilized rats was subjected to "dot blot" hybridization to ('32)P-labelled probe from plasmid p749, containing a cDNA sequence complementary to (alpha)-actin mRNA and from rat skeletal muscle. (alpha)-Actin specific mRNA content as estimated by this procedure is not significantly decreased in rat gastrocnemius following 6h or hindlimb immobilization. However, (alpha)-actin specific mRNA content is significantly decreased (P < 0.05) in adult rat gastrocnemius (alpha)-actin specific mRNA is not decreased in adult rat gastrocnemius muscle following 6h of immobilization, a time when actin synthesis is significantly decreased, it is concluded that a change in (alpha)-actin specific mRNA content is not the initiating event responsible for the early decrease in actin synthesis observed in the 6th h of immobilization. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cells infected with a temperature sensitive phenotypic mutant of Moloney sarcoma virus (MuSVts110) exhibit a transformed phenotype at 33('(DEGREES)) and synthesize two virus specific proteins, p85('gag-mos), a gag-mos fusion protein and p58('gag), a truncated gag precursor protein (the gag gene codes for viral structural proteins and mos is the MuSV transforming gene). At 39('(DEGREES)) only p58('gag) is synthesized and the morphology of the cells is similar to uninfected NRK parental cells. Two MuSVts110 specific RNAs are made in MuSVts110-infected cells, one of 4.0 kb in length, the other of 3.5 kb. Previous work indicated that each of these RNAs arose by a single central deletion of parental MuSV genetic material, and that p58('gag) was made by the 4.0 kb RNA and p85('gag-mos) from the 3.5 kb RNA. The objective of my dissertation research was to map precisely the deletion boundaries of both of the MuSVts110 RNAs, and to determine the proper reading frame across both deletion borders. This work succeeded in arriving at the following conclusions: (a) Using S-1 nuclease analysis and primer extension sequencing, it was found that the 4.0 kb MuSVts110 RNA arose by a 1488 base deletion of 5.2 kb parental MuSV genomic RNA. This deletion resulted in an out of frame fusion of the gag and mos genes that resulted in the formation of a "stop" codon which causes termination of translation just beyond the c-terminus of the gag region. Thus, this RNA can only be translated into the truncated gag protein p58('gag). (b) S-1 analysis of RNA from cells cultivated at different temperatures demonstrated that the 4.0 kb RNA was synthesized at all temperatures but that synthesis of the 3.5 kb RNA was temperature sensitive. These observations supported the data derived from blot hybridization experiments the interpretation of which argued for the existence of a single provirus in MuSVts110 infected cells, and hence only a single primary transcript (the 4.0 kb RNA). (c) Analyses similar to those described in (a) above showed that the 3.5 kb RNA was derived from the 4.0 kb MuSVts110 RNA by a further deletion of 431 bases, fusing the gag and mos genes into a continuous reading frame capable of directing synthesis of the p85('gag-mos) protein. These sequence data and the presence of only one MuSVts110-specific provirus, indicate that a splice mechanism is employed to generate the 3.5 kb RNA since the gag and mos genes are observed to be fused in frame in this RNA. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcriptional regulation is fundamental for the precise development of all organisms. Through tight regulation, necessary genes are activated at proper spatial and temporal patterns, while unnecessary genes are repressed. A large family of regulator proteins that have been demonstrated to be involved in various developmental processes by activation and repression of target genes is the homeodomain family of proteins. To date, the function of many of these homeoproteins has been elucidated in diverse species. However, the molecular mechanism underlying the function of these proteins has not been fully understood. In this study, the molecular mechanism of the function of a LIM-homeoprotein, Lim1, was examined. In addition to the homeodomain, Lim1 contains two LIM domains that are highly conserved among species. This high conservation along with data from in vitro studies on Xenopus Lim1 suggests that the LIM domains might be important for the function of Lim1 as a transcriptional regulator. Here, the functional importance of the LIM domains of Lim1 was determined by using a novel gene-targeting strategy in mouse embryonic stem (ES) cells. A cre-loxP system was used in conjunction with the unique genomic organization of Lim1 to obtain four types of mutant ES cell lines that would allow for the in vivo analysis of the function of both the LIM domains of Lim1 together and also singularly. These four mutant Lim1 alleles either contained base-pair changes at the LIM encoding exons that alters zinc-binding amino acids of the LIM domains or contained only exogenous loxP sequences in the first intron of Lim1, which serves as the control allele. These mutations in the LIM domains would presumably abolish the zinc-finger tertiary structure of the domain and thus render the domain non-functional. Mice carrying mutations at both the LIM domains of Lim1, L1L2, die around E10 without anterior head structures anterior to rhombomere 3, identical in phenotype to the Lim1 null mutants in spite of the presence of mutant Lim1 RNA. This result demonstrates that the integrity of both the LIM domains are essential for the function of Lim1. This is further supported by the phenotype of mice carrying mutation at only the second LIM domain of Lim1, L2. The L2 mice although still carrying one intact Lim1 LIM domain, also die in utero. The L2 mice die at varying times, from around E8 to E10 with anterior defects in addition to other axial defects which have yet to be fully characterized. The results of this study so far demonstrates that the integrity of both LIM domains are required for the function of Lim1. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sigma (σ) subunit of eubacterial RNA polymerase is required for recognition of and transcription initiation from promoter DNA sequences. One family of sigma factors includes those related to the primary sigma factor from E. coli, σ70. Members of the σ70 family have four highly conserved domains, of which regions 2 through 4 are present in all members. Region 1 can be subdivided into regions 1.1 and 1.2. Region 1.1 affects DNA binding by σ 70 alone, as well as transcription initiation by holoenzyme. Region 1.2, present and highly conserved in most sigma factors, has not yet been assigned a putative function, although previous work demonstrated that it is not required for either association with the core subunits of RNA polymerase or promoter specific binding by holoenzyme. This study primarily investigates the functional role of region 1.2 during transcription initiation. In vivo and in vitro characterization of thirty-two single amino acid substitutions targeted to region 1.2 of E. coli σ70 as well as a deletion of region 1.2, revealed that mutations in region 1.2 can affect promoter binding, open complex formation, initiated complex formation, and the transition from abortive transcription to elongation. The relative degree of solvent exposure of several positions in region 1.2 has been determined, with positions 116 and 122 likely to be located near the surface of σ70. ^ During the course of this study, the existence of two “wild type” variants of E. coli σ70 was discovered. The identity of amino acid 149 has been reported variably as either arginine or aspartic acid in published articles and in online databases. In vivo and in vitro characterization of the two reported variations of E. coli σ70 (N149 and D149) has determined that the two variants are functionally equivalent. However, in vivo and in vitro characterization of single amino acid substitutions and a region 1.2 deletion in the context of each variant background revealed that the behavior of some mutations are greatly affected by the identity of amino acid 149. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many organisms, polarity of the oocyte is established post-transcriptionally via subcellular RNA localization. Many RNAs are localized during oogenesis in Xenopus laevis, including Xlsirts ( Xenopus laevis short interspersed repeat transcripts) [Kloc, 1993]. Xlsirts constitute a large family defined by highly homologous repeat units 79–81 nucleotides in length. Endogenous Xlsirt RNAs use the METRO (Message Transport Organizer) pathway of localization, where RNAs are transported from the nucleus to the mitochondrial cloud in stage I oocytes. Secondly, RNAs anchor at the vegetal pole in stage II oocytes. Exogenous Xlsirt RNAs can also utilize the Late pathway of localization, which involves localization to the vegetal cortex during stage III of oogenesis and results in RNAs anchored in the cortex of the entire vegetal hemisphere. ^ The Xlsirts localization signal is contained within the repeat region. This study was designed to test the hypothesis that there are cis -acting localization elements in Xlsirts, and that higher order structure plays a role. Results of experiments on Xlsirt P11, a 1700 basepair (bp) family member, led to the conclusion that a 137-bp fragment of the repetitive region is necessary and sufficient for METRO and Late pathway localization. This analysis definitively demonstrates that the Xlsirt localization signal for the METRO and Late pathways reside within the repetitive region and not within the flanking regions. Analysis of Xlsirt linker scanning mutations revealed two METRO-pathway specific subelements, and one Late-pathway specific subelement. Functional, computer, and biochemical evidence relates the higher order structure of this element to its ability to function as a localization element. ^ Xlsirt 137 is 99% identical to the Xlsirt consensus sequence identified in this study, suggesting that it is the localization element for all localized Xlsirt family members. The repeat unit was reframed based on function, rather than arbitrarily based on sequence. This work supports the hypothesis presented in 1981 by George Spohr, who originally isolated the Xlsirts, which stated that the highly conserved repetitive elements must be constrained from variability due to some unknown function of the repeats themselves. These studies shed light on the mechanism of RNA localization, linking structure and function. ^