905 resultados para RICE GRAIN
Resumo:
The objective of this work was to select and use microsatellite markers, to map genomic regions associated with the genetic control of thermosensitive genic male sterility (TGMS) in rice. An F2 population, derived from the cross between fertile and TGMS indica lines, was used to construct a microsatellite-based genetic map of rice. The TGMS phenotype showed a continuous variation in the segregant population. A low level of segregation distortion was detected in the F2 (14.65%), whose cause was found to be zygotic selection. There was no evidence suggesting a cause-effect relationship between zygotic selection and the control of TGMS in this cross. A linkage map comprising 1,213.3 cM was constructed based on the segregation data of the F2 population. Ninety-five out of 116 microsatellite polymorphic markers were assembled into 11 linkage groups, with an average of 12.77 cM between two adjacent marker loci. The phenotypic and genotypic data allowed for the identification of three new quantitative trait loci (QTL) for thermosensitive genic male sterility in indica rice. Two of the QTL were mapped on chromosomes that, so far, have not been associated with the genetic control of the TGMS trait (chromosomes 1 and 12). The third QTL was mapped on chromosome 7, where a TGMS locus (tms2) has recently been mapped. Allelic tests will have to be developed, in order to clarify if the two regions are the same or not.
Resumo:
The objective of this work was to investigate heterosis and its components in 16 white grain maize populations presenting high quality protein. These populations were divided according to grain type in order to establish different heterosis groups. The crosses were carried out according to a partial diallel cross design among flint and dent populations. Seven agronomic traits were evaluated in three environments while four leaf diseases and incidence of corn stunt were evaluated in one. Least square procedure was applied to the normal equation X'Xbeta = X'Y, to estimate the model effects and their respective sum of squares. Among the heterosis components, in diallel analysis, significance for average heterosis in grain yield, number of days to female flowering and to all evaluated diseases was detected. Specific heterosis was significant for days to female flowering and resistance to Puccinia polysora. Results concerned to grain yield trait indicate that populations with superior performance in dent group, no matter what flint population group is used in crosses, tend to generate superior intervarietal hybrids. In decreasing order of preference, the dent type populations CMS 476, ZQP/B 103 and ZQP/B 101 and the flint type CMS 461, CMS 460, ZQP/B 104 and ZQP/B 102 are recommended to form composites.
Resumo:
A model has been developed for evaluating grain size distributions in primary crystallizations where the grain growth is diffusion controlled. The body of the model is grounded in a recently presented mean-field integration of the nucleation and growth kinetic equations, modified conveniently in order to take into account a radius-dependent growth rate, as occurs in diffusion-controlled growth. The classical diffusion theory is considered, and a modification of this is proposed to take into account interference of the diffusion profiles between neighbor grains. The potentiality of the mean-field model to give detailed information on the grain size distribution and transformed volume fraction for transformations driven by nucleation and either interface- or diffusion-controlled growth processes is demonstrated. The model is evaluated for the primary crystallization of an amorphous alloy, giving an excellent agreement with experimental data. Grain size distributions are computed, and their properties are discussed.
Resumo:
OBJECTIVES: Agriculture is considered one of the occupations most at risk of acute or chronic respiratory problems. The aim of our study was to determine from which level of exposure to organic dust the respiratory function is chronically affected in workers involved in wheat grain or straw manipulation and to test if some of these working populations can recover their respiratory function after an exposure decrease. METHOD: 87 workers exposed to wheat dust: farmers, harvesters, silo workers and livestock farmers and 62 non exposed workers, were included into a longitudinal study comprising two visits at a six months interval with lung function measurements and symptom questionnaires. Cumulative and mean exposure to wheat dust were generated from detailed work history of each worker and a task-exposure matrix based on task-specific exposure measurements. Immunoglobulins (IgG and IgE) specific of the most frequent microorganisms in wheat dust have been determined. RESULTS: FEV1 decreased significantly with the cumulative exposure and mean exposure levels. The estimated decrease was close to 200 mL per year of high exposure, which corresponds roughly to levels of wheat dust higher than 10 mg/m(3). Peak expiratory flow and several acute symptoms correlate with recent exposure level. Recovery of the respiratory function six months after exposure to wheat dust and evolution of exposure indicators in workers blood (IgG and IgE) will be discussed. CONCLUSIONS: These results show a chronic effect of exposure to wheat dust on bronchial obstruction. Short term effects and reversibility will be assessed using the full study results.
Resumo:
The objective of this work was to study possible mechanisms involved in root-induced changes of rhizosphere physicochemical properties of rice genotypes, under anoxia and low supply of Zn and Fe. Two rice genotypes, including an upland and a lowland ones, were grown in hydroponic medium under adequate and low supply of Zn and Fe, with or without aeration. Anoxia increased shoot dry weight, root length and uptake of Zn and Fe in lowland Amol genotype, but reduced these parameters in upland Gasrol-Dashti genotype. The amount of oxygen released by roots was statistically higher in 'Amol'. The highest acidification potential of roots was observed in the lowland genotype under low supply of Zn, and in the upland genotype under Fe starvation. The highest oxalate (only organic acid detected) exudation from roots was observed in Zn and Fe deficient Gasrol-Dashti genotype. Zinc deficiency caused reduction of alcohol dehydrogenase and stimulation of lactate dehydrogenase activity, particularly in shoot. The ability to induce changes in the rhizosphere properties has a great contribution for the adaptation of both lowland and upland rice genotypes to specific soil conditions.
Resumo:
The objective of this study was to assess the development response of cultivated rice and red rice to different increases in minimum and maximum daily air temperatures, in Santa Maria, Rio Grande do Sul State, Brazil. One hundred years climate scenarios of temperatures 0, +1, +2, +3, +4, and +5ºC, with symmetric and asymmetric increases in minimum and maximum daily air temperatures were created, using the LARS-WG Weather Generator, and a 1969-2003 database. Nine cultivated rice genotypes (IRGA 421, IRGA 416, IRGA 417, IRGA 420, BRS 7 TAIM, BR-IRGA 409, EPAGRI 109, EEA 406 and a hybrid), and two red rice biotypes (awned black hull-ABHRR, and awned yellow hull-AYHRR) were used. The dates of panicle differentiation (R1), anthesis (R4), and all grains with brown hulls (R9) were estimated with a nonlinear simulation model. Overall, the duration of the emergence-R1 phase decreased, whereas the duration of the R1-R4 and R4-R9 phases most often increased, as temperature increased in the climate change scenarios. The simulated rice development response to elevated temperature was not the same, when the increase in minimum and maximum temperature was symmetric or asymmetric.
Resumo:
The objectives of this work were to study the genetic control of grain yield (GY) and nitrogen (N) use efficiency (NUE, grain yield/N applied) and its primary components, N uptake efficiency (NUpE, N uptake/N applied) and N utilization efficiency (NUtE, grain yield/N uptake), in maize grown in environments with high and low N availability. Experiments with 31 maize genotypes (28 hybrid crosses and three controls) were carried out in soils with high and low N rates, in the southeast of the state of Minas Gerais, Brazil. There was a reduction of 23.2% in average GY for maize grown in soil with low N, in comparison to that obtained with high N. There were 26.5, 199 and 400% increases in NUtE, NUpE, and NUE, respectively, for maize grown with low N. The general combining ability (GCA) and specific combining ability (SCA) were significant for GY, NUE and NUpE for maize grown in high N soil. Only GCA was significant for NUpE for maize grown in low N soil. The GCA and SCA for NUtE were not significant in either environment. Additive and non-additive genetic effects are responsible for the genetic control of NUE and GY for maize grown in soils with high N availability, although additive effects are more important.
Resumo:
The objective of this work was to evaluate the chemical and physical characteristics of grains of soybean (Glycine max) cultivars for food processing. The soybean cultivars evaluated were: grain-type - BRS 133 and BRS 258; food-type - BRS 213 (null lipoxygenases), BRS 267 (vegetable-type) and BRS 216 (small grain size). BRS 267 and BRS 216 cultivars showed higher protein content, indicating that they could promote superior nutritional value. BRS 213 cultivar showed the lowest lipoxygenase activity, and BRS 267, the lowest hexanal content. These characteristics can improve soyfood flavor. After cooking, BRS 267 cultivar grains presented a higher content of aglycones (more biologically active form of isoflavones) and oleic acid, which makes it proper for functional foods and with better stability for processing, and also showed high content of fructose, glutamic acid and alanine, compounds related to the soybean mild flavor. Because of its large grain size, BRS 267 is suitable for tofu and edamame, while small-grain-sized BRS 216 is good for natto and for soybean sprouts production. BRS 216 and BRS 213 cultivars presented shorter cooking time, which may be effective for reducing processing costs.
Resumo:
The objectives of this work were to caracterize the tropical maize germplasm and to compare the combining abilities of maize grain yield under different levels of environmental stress. A diallel was performed among tropical maize cultivars with wide adaptability, whose hybrid combinations were evaluated in two sowing dates, in two years. The significance of the environmental effect emphasized the environmental contrasts. Based on grain yield, the environments were classified as favorable (8,331 kg ha-1), low stress (6,637 kg ha-1), high stress (5,495 kg ha-1), and intense stress (2,443 kg ha-1). None of the genetic effects were significant in favorable and intense stress environments, indicating that there was low germplasm variability under these conditions. In low and high stresses, the specific combining ability effects (SCA) were significant, showing that the nonadditive genetic effects were the most important, and that it is possible to select parent pairs with breeding potential. SCA and grain yield showed significant correlations only between the closer environment pairs like favorable/low stress and high/intense stress. The genetic control of grain yield differed under contrasting stress environments for which maize cultivars with wide adaptability are not adequate.
Hot spots for diversity of Magnaporthe oryzae physiological races in irrigated rice fields in Brazil
Resumo:
The objective of this work was to evaluate the Magnaporthe oryzae pathotype diversity in new commercial irrigated rice fields in the Araguaia River Valley, state of Tocantins, Brazil. The causal agent of rice blast has heavily affected rice production in the region. Despite the efforts of breeding programs, blast resistance breakdown has been recorded shortly after the release of new resistant cultivars developed for the region. Among the causes of resistance breakage is the capacity of the fungus to rapidly develop new pathotypes. A sample of 479 M. oryzae monosporic isolates was obtained and tested using the international rice blast differential set. Isolate collections were made in small areas designed as trap nurseries and in scattered sites in their vicinity. Analysis of 250 M. oryzae isolates from three trap nurseries indicated the presence of 45 international M. oryzae races belonging to seven pathotype groups (IA-IG). In the isolates tested, 61 M. oryzae pathotypes belonging to all but the IH group were detected. The new areas of irrigated rice in the Araguaia River Valley have the highest diversity of M. oryzae pathotypes reported so far in Brazil.
Resumo:
The objective of this work was to develop new irrigated rice lines tolerant to imidazolinone herbicides. The backcross breeding procedure was used to transfer the imidazolinone tolerance allele from mutant 93AS3510 to the recurrent parents 'BRS 7 Taim' and 'BRS Pelota'. Individual herbicide-tolerant plants were selected in each generation, for three backcrossings (RC1 to RC3), followed by three selfing generations (RC3F1 to RC3F3). The best four RC3F3 lines for agronomic traits were genotyped with 44 microsatellite markers. The observed conversion index of the new imidazolinone-tolerant lines varied from 91.86 to 97.67%. Pairwise genetic distance analysis between these lines and 22 accessions from the Embrapa's Rice Germplasm Bank clustered the new lines with their respective recurrent parents, but not with 'IRGA 417', which was originally used as recurrent parent to derive IRGA 422 CL, the only imidazolinone-tolerant irrigated rice cultivar recommended for cultivation in Brazil. Therefore, these lines represent new options of genetically diverse imidazolinone-tolerant rice accessions. Lines CNA10756 ('BRS Sinuelo CL') and CNA10757 will be released for cultivation in the Clearfield irrigated rice production system in Rio Grande do Sul, Brazil.
Resumo:
The objective of this work was to evaluate the effect of winter land use on the amount of residual straw, the physical soil properties and grain yields of maize, common bean and soybean summer crops cultivated in succession. The experiment was carried out in the North Plateau of Santa Catarina state, Brazil, from May 2006 to April 2010. Five strategies of land use in winter were evaluated: intercropping with black oat + ryegrass + vetch, without grazing and nitrogen (N) fertilization (intercropping cover); the same intercropping, with grazing and 100 kg ha-1 of N per year topdressing (pasture with N); the same intercropping, with grazing and without nitrogen fertilization (pasture without N); oilseed radish, without grazing and nitrogen fertilization (oilseed radish); and natural vegetation, without grazing and nitrogen fertilization (fallow). Intercropping cover produces a greater amount of biomass in the system and, consequently, a greater accumulation of total and particulate organic carbon on the surface soil layer. However, land use in winter does not significantly affect soil physical properties related to soil compaction, nor the grain yield of maize, soybean and common bean cultivated in succession.
Resumo:
The objective of this work was to evaluate the influence of different grazing periods on beef animal production and on wheat forage and grain yield. The experiment was carried out in Pato Branco, PR, Brazil. Six grazing periods were evaluated (0, 21, 42, 63, 84, and 105 days) on dual-purpose wheat cultivar BRS Tarumã. Purunã steers, with average live weight of 162 kg and ten months of age, were kept under continuous grazing using a variable stocking rate, in order to maintain the established sward height of 25 cm. Greater increases in total animal gain (TAG) occurred with longer grazing periods. However, there was little increase after 63 days (490 kg ha-1), and TAG decreased from 552 to 448 kg ha-1 between 84 and 105 days. Grain yield decreased from 2,830 to 610 kg ha-1 when the grazing period increased from 0 to 105 days, but there was little change after 63 days (750 kg ha-1). Cultivar BRS Tarumã shows excellent animal production potential, and the decision on how long wheat pastures should be grazed must be based on relative prices of grain and livestock.
Resumo:
The objective of this work was to evaluate the effect of biochar made from Eucalyptus on soil fertility, and on the yield and development of upland rice. The experiment was performed during two years in a randomized block design with four replicates, in a sandy loam Dystric Plinthosol. Four doses of NPK 05-25-15, annually distributed in stripes (0, 100, 200 and 300 kg ha-1), and four doses of biochar (0, 8, 16 and 32 Mg ha-1), applied once in the first year - alone or with NPK - were evaluated. In the first year, biochar positively affected soil fertility [total organic carbon (TOC), Ca, P, Al, H+Al, and pH], at 0-10 cm soil depth, and it was the only factor with significant effect on yield. In the second year, the effect of biochar diminished or was overcome by the fertilizer. TOC moved down in the soil profile to the 0-20 cm depth, influencing K availability in this layer. In the second year, there was a significant interaction between biochar and the fertilizer on plant growth and biomass dry matter accumulation.
Resumo:
The objective of this work was to evaluate the effect of eucalyptus biochar on the transpiration rate of upland rice 'BRSMG Curinga' as an alternative means to decrease the effect of water stress on plant growth and development. Two-pot experiments were carried out using a completely randomized block design, in a split-plot arrangement, with six replicates. Main plots were water stress (WS) and no-water stress (NWS), and the subplots were biochar doses at 0, 6, 12 and 24% in growing medium (sand). Total transpirable soil water (TTSW), the p factor - defined as the average fraction of TTSW which can be depleted from the root zone before water stress limits growth -, and the normalized transpiration rate (NTR) were determined. Biochar addition increased TTSW and the p factor, and reduced NTR. Consequently, biochar addition was able to change the moisture threshold (p factor) of the growing medium, up to 12% maximum concentration, delaying the point where transpiration declines and affects yield.