954 resultados para RIBOSOMAL-RNA AMPLIFICATION


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Trypanosoma (Megatrypanum) theileri from cattle and trypanosomes of other artiodactyls form a clade of closely related species in analyses using ribosomal sequences. Analysis of polymorphic sequences of a larger number of trypanosomes from broader geographical origins is required to evaluate the Clustering of isolates as suggested by previous studies. Here, we determined the sequences of the spliced leader (SL) genes of 21 isolates from cattle and 2 from water buffalo from distant regions of Brazil. Analysis of SL gene repeats revealed that the 5S rRNA gene is inserted within the intergenic region. Phylogeographical patterns inferred using SL sequences showed at least 5 major genotypes of T. theileri distributed in 2 strongly divergent lineages. Lineage TthI comprises genotypes IA and IB from buffalo and cattle, respectively, from the Southeast and Central regions, whereas genotype IC is restricted to cattle from the Southern region. Lineage Tth II includes cattle genotypes IIA, which is restricted to the North and Northeast, and IIB, found in the Centre, West, North and Northeast. PCR-RFLP of SL genes revealed valuable markers for genotyping T. theileri. The results of this study emphasize the genetic complexity and corroborate the geographical structuring of T. theileri genotypes found in cattle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present data supporting cytogenetic observations on nucleolar dominance in hybrids between Drosophila arizonae and D. mulleri. Our approach was to compare the rDNA restriction patterns between the parental species and their hybrids. Results demonstrated that the minichromosome attached to the nucleolus in hybrid males is derived from D. arizonae.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Medulloblastoma (MB) is the most common malignant brain tumor in children and is associated with a poor outcome. cMYC amplification characterizes a subgroup of MB with very poor prognosis. However, there exist so far no targeted therapies for the subgroup of MB with cMYC amplification. Here we used kinome-wide RNA interference screening to identify novel kinases that may be targeted to inhibit the proliferation of c-Myc-overexpressing MB. The RNAi screen identified a set of 5 genes that could be targeted to selectively impair the proliferation of c-Myc-overexpressing MB cell lines: AKAP12 (A-kinase anchor protein), CSNK1α1 (casein kinase 1, alpha 1), EPHA7 (EPH receptor A7) and PCTK1 (PCTAIRE protein kinase 1). When using RNAi and a pharmacological inhibitor selective for PCTK1, we could show that this kinase plays a crucial role in the proliferation of MB cell lines and the activation of the mammalian target of rapamycin (mTOR) pathway. In addition, pharmacological PCTK1 inhibition reduced the expression levels of c-Myc. Finally, targeting PCTK1 selectively impaired the tumor growth of c-Myc-overexpressing MB cells in vivo. Together our data uncover a novel and crucial role for PCTK1 in the proliferation and survival of MB characterized by cMYC amplification.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nucleic acid sequence-based amplification (NASBA) has proved to be an ultrasensitive method for HIV-1 diagnosis in plasma even in the primary HIV infection stage. This technique was combined with fluorescence correlation spectroscopy (FCS) which enables online detection of the HIV-1 RNA molecules amplified by NASBA. A fluorescently labeled DNA probe at nanomolar concentration was introduced into the NASBA reaction mixture and hybridizing to a distinct sequence of the amplified RNA molecule. The specific hybridization and extension of this probe during amplification reaction, resulting in an increase of its diffusion time, was monitored online by FCS. As a consequence, after having reached a critical concentration of 0.1–1 nM (threshold for unaided FCS detection), the number of amplified RNA molecules in the further course of reaction could be determined. Evaluation of the hybridization/extension kinetics allowed an estimation of the initial HIV-1 RNA concentration that was present at the beginning of amplification. The value of initial HIV-1 RNA number enables discrimination between positive and false-positive samples (caused for instance by carryover contamination)—this possibility of discrimination is an essential necessity for all diagnostic methods using amplification systems (PCR as well as NASBA). Quantitation of HIV-1 RNA in plasma by combination of NASBA with FCS may also be useful in assessing the efficacy of anti-HIV agents, especially in the early infection stage when standard ELISA antibody tests often display negative results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many viruses regulate protein synthesis by −1 ribosomal frameshifting using an RNA pseudoknot. Frameshifting is vital for viral reproduction. Using the information gained from the recent high-resolution crystal structure of the beet western yellow virus pseudoknot, a systematic mutational analysis has been carried out in vitro and in vivo. We find that specific nucleotide tertiary interactions at the junction between the two stems of the pseudoknot are crucial. A triplex is found between stem 1 and loop 2, and triplex interactions are required for frameshifting function. For some mutations, loss of one hydrogen bond is sufficient to abolish frameshifting. Furthermore, mutations near the 5′ end of the pseudoknot can increase frameshifting by nearly 300%, possibly by modifying ribosomal contacts. It is likely that the selection of suitable mutations can thus allow viruses to adjust frameshifting efficiencies and thereby regulate protein synthesis in response to environmental change.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The polymerase chain reaction (PCR) is a versatile method to amplify specific DNA with oligonucleotide primers. By designing degenerate PCR primers based on amino acid sequences that are highly conserved among all known gene family members, new members of a multigene family can be identified. The inherent weakness of this approach is that the degenerate primers will amplify previously identified, in addition to new, family members. To specifically address this problem, we synthesized a specific RNA for each known family member so that it hybridized to one strand of the template, adjacent to the 3′-end of the primer, allowing the degenerate primer to bind yet preventing extension by DNA polymerase. To test our strategy, we used known members of the soluble, nitric oxide-sensitive guanylyl cyclase family as our templates and degenerate primers that discriminate this family from other guanylyl cyclases. We demonstrate that amplification of known members of this family is effectively and specifically inhibited by the corresponding RNAs, alone or in combination. This robust method can be adapted to any application where multiple PCR products are amplified, as long as the sequence of the desired and the undesired PCR product(s) is sufficiently distinct between the primers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel database, under the acronym RISSC (Ribosomal Intergenic Spacer Sequence Collection), has been created. It compiles more than 1600 entries of edited DNA sequence data from the 16S–23S ribosomal spacers present in most prokaryotes and organelles (e.g. mitochondria and chloroplasts) and is accessible through the Internet (http://ulises.umh.es/RISSC), where systematic searches for specific words can be conducted, as well as BLAST-type sequence searches. Additionally, a characteristic feature of this region, the presence/absence and nature of tRNA genes within the spacer, is included in all the entries, even when not previously indicated in the original database. All these combined features could provide a useful documen­tation tool for studies on evolution, identification, typing and strain characterization, among others.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Analysis of the 2.4-Å resolution crystal structure of the large ribosomal subunit from Haloarcula marismortui reveals the existence of an abundant and ubiquitous structural motif that stabilizes RNA tertiary and quaternary structures. This motif is termed the A-minor motif, because it involves the insertion of the smooth, minor groove edges of adenines into the minor groove of neighboring helices, preferentially at C-G base pairs, where they form hydrogen bonds with one or both of the 2′ OHs of those pairs. A-minor motifs stabilize contacts between RNA helices, interactions between loops and helices, and the conformations of junctions and tight turns. The interactions between the 3′ terminal adenine of tRNAs bound in either the A site or the P site with 23S rRNA are examples of functionally significant A-minor interactions. The A-minor motif is by far the most abundant tertiary structure interaction in the large ribosomal subunit; 186 adenines in 23S and 5S rRNA participate, 68 of which are conserved. It may prove to be the universally most important long-range interaction in large RNA structures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The genetic study of RNA viruses is greatly facilitated by the availability of infectious cDNA clones. However, their construction has often been difficult. While exploring ways to simplify the construction of infectious clones, we have successfully modified and applied the newly described technique of "long PCR" to the synthesis of a full-length DNA amplicon from the RNA of a cytopathogenic mutant (HM 175/24a) of the hepatitis A virus (HAV). Primers were synthesized to match the two extremities of the HAV genome. The antisense primer, homologous to the 3' end, was used in both the reverse transcription (RT) and the PCR steps. With these primers we reproducibly obtained a full-length amplicon of approximately 7.5 kb. Further, since we engineered a T7 promoter in the sense primer, RNA could be transcribed directly from the amplicon with T7 RNA polymerase. Following transfection of cultured fetal rhesus kidney cells with the transcription mixture containing both the HAV cDNA and the transcribed RNA, replicating HAV was detected by immunofluorescence microscopy and, following passage to other cell cultures, by focus formation. The recovered virus displayed the cytopathic effect and large plaque phenotype typical of the original virus; this result highlights the fidelity of the modified long reverse transcription-PCR procedure and demonstrates the potential of this method for providing cDNAs of viral genomes and simplifying the construction of infectious clones.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We previously demonstrated that the putative oncogene AKT2 is amplified and overexpressed in some human ovarian carcinomas. We have now identified amplification of AKT2 in approximately 10% of pancreatic carcinomas (2 of 18 cell lines and 1 of 10 primary tumor specimens). The two cell lines with altered AKT2 (PANC1 and ASPC1) exhibited 30-fold and 50-fold amplification of AKT2, respectively, and highly elevated levels of AKT2 RNA and protein. PANC1 cells were transfected with antisense AKT2, and several clones were established after G418 selection. The expression of AKT2 protein in these clones was greatly decreased by the antisense RNA. Furthermore, tumorigenicity in nude mice was markedly reduced in PANC1 cells expressing antisense AKT2 RNA. To examine further whether overexpression of AKT2 plays a significant role in pancreatic tumorigenesis, PANC1 cells and ASPC1 cells, as well as pancreatic carcinoma cells that do not overexpress AKT2 (COLO 357), were transfected with antisense AKT2, and their growth and invasiveness were characterized by a rat tracheal xenotransplant assay. ASPC1 and PANC1 cells expressing antisense AKT2 RNA remained confined to the tracheal lumen, whereas the respective parental cells invaded the tracheal wall. In contrast, no difference was seen in the growth pattern between parental and antisense-treated COLO 357 cells. These data suggest that overexpression of AKT2 contributes to the malignant phenotype of a subset of human ductal pancreatic cancers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A 70-kDa protein was specifically induced in Escherichia coli when the culture temperature was shifted from 37 to 15 degrees C. The protein was identified to be the product of the deaD gene (reassigned csdA) encoding a DEAD-box protein. Furthermore, after the shift from 37 to 15 degrees C, CsdA was exclusively localized in the ribosomal fraction and became a major ribosomal-associated protein in cells grown at 15 degrees C. The csdA deletion significantly impaired cell growth and the synthesis of a number of proteins, specifically the derepression of heat-shock proteins, at low temperature. Purified CsdA was found to unwind double-stranded RNA in the absence of ATP. Therefore, the requirement for CsdA in derepression of heat-shock protein synthesis is a cold shock-induced function possibly mediated by destabilization of secondary structures previously identified in the rpoH mRNA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A role for rRNA in peptide chain termination was indicated several years ago by isolation of a 168 rRNA (small subunit) mutant of Escherichia coli that suppressed UGA mutations. In this paper, we describe another interesting rRNA mutant, selected as a translational suppressor of the chain-terminating mutant trpA (UGA211) of E. coli. The finding that it suppresses UGA at two positions in trpA and does not suppress the other two termination codons, UAA and UAG, at the same codon positions (or several missense mutations, including UGG, available at one of the two positions) suggests a defect in UGA-specific termination. The suppressor mutation was mapped by plasmid fragment exchanges and in vivo suppression to domain II of the 23S rRNA gene of the rrnB operon. Sequence analysis revealed a single base change of G to A at residue 1093, an almost universally conserved base in a highly conserved region known to have specific interactions with ribosomal proteins, elongation factor G, tRNA in the A-site, and the peptidyltransferase region of 23S rRNA. Several avenues of action of the suppressor mutation are suggested, including altered interactions with release factors, ribosomal protein L11, or 16S rRNA. Regardless of the mechanism, the results indicate that a particular residue in 23S rRNA affects peptide chain termination, specifically in decoding of the UGA termination codon.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Positive-sense RNA viruses are important animal, plant, insect and bacteria pathogens and constitute the largest group of RNA viruses. Due to the relatively small size of their genomes, these viruses have evolved a variety of non-canonical translation mechanisms to optimize coding capacity expanding their proteome diversity. One such strategy is codon redefinition or recoding. First described in viruses, recoding is a programmed translation event in which codon alterations are context dependent. Recoding takes place in a subset of messenger RNA (mRNAs) with some products reflecting new, and some reflecting standard, meanings. The ratio between the two is both critical and highly regulated. While a variety of recoding mechanisms have been documented, (ribosome shunting, stop-carry on, termination-reinitiation, and translational bypassing), the two most extensively employed by RNA viruses are Programmed Ribosomal Frameshifting (PRF) and Programmed Ribosomal Readthrough (PRT). While both PRT and PRF subvert normal decoding for expression of C-terminal extension products, the former involves an alteration of reading frame, and the latter requires decoding of a non-sense codon. Both processes occur at a low but defined frequency, and both require Recoding Stimulatory Elements (RSE) for regulation and optimum functionality. These stimulatory signals can be embedded in the RNA in the form of sequence or secondary structure, or trans-acting factors outside the mRNA such as proteins or micro RNAs (miRNA). Despite 40+ years of study, the precise mechanisms by which viral RSE mediate ribosome recoding for the synthesis of their proteins, or how the ratio of these products is maintained, is poorly defined. This study reveals that in addition to a long distance RNA:RNA interaction, three alternate conformations and a phylogenetically conserved pseudoknot regulate PRT in the carmovirus Turnip crinkle virus (TCV).