914 resultados para RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties and toxicity of untreatedwastewater at Davis Station, East Antarctica,were investigated to inform decisions regarding the appropriate level of treatment for local discharge purposes and more generally, to better understand the risk associated with dispersal and impact of wastewaters in Antarctica. Suspended solids, nutrients (nitrogen, phosphorus), biological oxygen demand (BOD), metals, organic contaminants, surfactants and microbiological load were measured at various locations throughout the wastewater discharge system. Wastewater quality and properties varied greatly between buildings on station, each ofwhich has separate holding tanks. Nutrients, BOD and settleable solid levelswere higher than standard municipal wastewaters. Microbiological loads were typical of untreated wastewater. Contaminants detected in the wastewater included metals and persistent organic compounds, mainly polybrominated diphenyl ethers (PBDEs). The toxicity of wastewater was also investigated in laboratory bioassays using two local Antarctic marine invertebrates, the amphipod Paramoera walkeri and the microgastropod Skenella paludionoides. Animals were exposed to a range of wastewater concentrations from3% to 68% (test 1) or 63% (test 2) over 21 days with survival monitored daily. Significant mortality occurred in all concentrations of wastewater after 14 to 21 days, and at higher concentrations (50–68% wastewater) mortality occurred after only one day. Results indicate that the local receiving marine environment at Davis Station is at risk from existing wastewater discharges, and that advanced treatment is required both to remove contaminants shown to cause toxicity to biota, as well as to reduce the environmental risks associated with non-native micro-organisms in wastewater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes experiences with the use of the Globus toolkit and related technologies for development of a secure portal that allows nationally-distributed Australian researchers to share data and application programs. The portal allows researchers to access infrastructure that will be used to enhance understanding of the causes of schizophrenia and advance its treatment, and aims to provide access to a resource that can expand into the world’s largest on-line collaborative mental health research facility. Since access to patient data is controlled by local ethics approvals, the portal must transparently both provide and deny access to patient data in accordance with the fine-grained access permissions afforded individual researchers. Interestingly, the access protocols are able to provide researchers with hints about currently inaccessible data that may be of interest to them, providing them the impetus to gain further access permissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to its three-dimensional folding pattern, the human neocortex; poses a challenge for accurate co-registration of grouped functional; brain imaging data. The present study addressed this problem by; employing three-dimensional continuum-mechanical image-warping; techniques to derive average anatomical representations for coregistration; of functional magnetic resonance brain imaging data; obtained from 10 male first-episode schizophrenia patients and 10 age-matched; male healthy volunteers while they performed a version of the; Tower of London task. This novel technique produced an equivalent; representation of blood oxygenation level dependent (BOLD) response; across hemispheres, cortical regions, and groups, respectively, when; compared to intensity average co-registration, using a deformable; Brodmann area atlas as anatomical reference. Somewhat closer; association of Brodmann area boundaries with primary visual and; auditory areas was evident using the gyral pattern average model.; Statistically-thresholded BOLD cluster data confirmed predominantly; bilateral prefrontal and parietal, right frontal and dorsolateral; prefrontal, and left occipital activation in healthy subjects, while; patients’ hemispheric dominance pattern was diminished or reversed,; particularly decreasing cortical BOLD response with increasing task; difficulty in the right superior temporal gyrus. Reduced regional gray; matter thickness correlated with reduced left-hemispheric prefrontal/; frontal and bilateral parietal BOLD activation in patients. This is the; first study demonstrating that reduction of regional gray matter in; first-episode schizophrenia patients is associated with impaired brain; function when performing the Tower of London task, and supports; previous findings of impaired executive attention and working memory; in schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuroimaging research has shown localised brain activation to different facial expressions. This, along with the finding that schizophrenia patients perform poorly in their recognition of negative emotions, has raised the suggestion that patients display an emotion specific impairment. We propose that this asymmetry in performance reflects task difficulty gradations, rather than aberrant processing in neural pathways subserving recognition of specific emotions. A neural network model is presented, which classifies facial expressions on the basis of measurements derived from human faces. After training, the network showed an accuracy pattern closely resembling that of healthy subjects. Lesioning of the network led to an overall decrease in the network’s discriminant capacity, with the greatest accuracy decrease to fear, disgust and anger stimuli. This implies that the differential pattern of impairment in schizophrenia patients can be explained without having to postulate impairment of specific processing modules for negative emotion recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational neuroscience aims to elucidate the mechanisms of neural information processing and population dynamics, through a methodology of incorporating biological data into complex mathematical models. Existing simulation environments model at a particular level of detail; none allow a multi-level approach to neural modelling. Moreover, most are not engineered to produce compute-efficient solutions, an important issue because sufficient processing power is a major impediment in the field. This project aims to apply modern software engineering techniques to create a flexible high performance neural modelling environment, which will allow rigorous exploration of model parameter effects, and modelling at multiple levels of abstraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neu-Model, an ongoing project aimed at developing a neural simulation environment that is extremely computationally powerful and flexible, is described. It is shown that the use of good Software Engineering techniques in Neu-Model’s design and implementation is resulting in a high performance system that is powerful and flexible enough to allow rigorous exploration of brain function at a variety of conceptual levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hippocampal-CA3 memory model was constructed with PGENESIS, a recently developed version of GENESIS that allows for distributed processing of a neural network simulation. A number of neural models of the human memory system have identified the CA3 region of the hippocampus as storing the declarative memory trace. However, computational models designed to assess the viability of the putative mechanisms of storage and retrieval have generally been too abstract to allow comparison with empirical data. Recent experimental evidence has shown that selective knock-out of NMDA receptors in the CA1 of mice leads to reduced stability of firing specificity in place cells. Here a similar reduction of stability of input specificity is demonstrated in a biologically plausible neural network model of the CA3 region, under conditions of Hebbian synaptic plasticity versus an absence of plasticity. The CA3 region is also commonly associated with seizure activity. Further simulations of the same model tested the response to continuously repeating versus randomized nonrepeating input patterns. Each paradigm delivered input of equal intensity and duration. Non-repeating input patterns elicited a greater pyramidal cell spike count. This suggests that repetitive versus non-repeating neocortical inpus has a quantitatively different effect on the hippocampus. This may be relevant to the production of independent epileptogenic zones and the process of encoding new memories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Post traumatic stress disorder (PTSD) is a serious medical condition effecting both military and civilian populations. While its etiology remains poorly understood it is characterized by high and prolonged levels of fear responding. One biological unknown is whether individuals expressing high or low conditioned fear memory encode the memory differently and if that difference underlies fear response. In this study we examined cellular mechanisms that underlie high and low conditioned fear behavior by using an advanced intercrossed mouse line (B6D2F1) selected for high and low Pavlovian fear response. A known requirement for consolidation of fear memory, phosphorylated mitogen activated protein kinase (p44/42 (ERK) MAPK (pMAPK)) in the lateral amygdala (LA) is a reliable marker of fear learning-related plasticity. In this study, we asked whether high and low conditioned fear behavior is associated with differential pMAPK expression in the LA and if so, is it due to an increase in neurons expressing pMAPK or increased pMAPK per neuron. To examine this, we quantified pMAPK-expressing neurons in the LA at baseline and following Pavlovian fear conditioning. Results indicate that high fear phenotype mice have more pMAPK-expressing neurons in the LA. This finding suggests that increased endogenous plasticity in the LA may be a component of higher conditioned fear responses and begins to explain at the cellular level how different fear responders encode fear memories. Understanding how high and low fear responders encode fear memory will help identify novel ways in which fear-related illness risk can be better predicted and treated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological factors underlying individual variability in fearfulness and anxiety have important implications for stress-related psychiatric illness including PTSD and major depression. Using an advanced intercross line (AIL) derived from C57BL/6 and DBA/2J mouse strains and behavioral selection over 3 generations, we established two lines exhibiting High or Low fear behavior after fear conditioning. Across the selection generations, the two lines showed clear differences in training and tests for contextual and conditioned fear. Before fear conditioning training, there were no differences between lines in baseline freezing to a novel context. However, after fear conditioning High line mice demonstrated pronounced freezing in a new context suggestive of poor context discrimination. Fear generalization was not restricted to contextual fear. High fear mice froze to a novel acoustic stimulus while freezing in the Low line did not increase over baseline. Enhanced fear learning and generalization are consistent with transgenic and pharmacological disruption of the hypothalamic-pituitary-adrenal axis (HPA-axis) (Brinks, 2009, Thompson, 2004, Kaouane, 2012). To determine whether there were differences in HPA-axis regulation between the lines, morning urine samples were collected to measure basal corticosterone. Levels of secreted corticosterone in the circadian trough were analyzed by corticosterone ELISA. High fear mice were found to have higher basal corticosterone levels than low line animals. Examination of hormonal stress response components by qPCR revealed increased expression of CRH mRNA and decreased mRNA for MR and CRHR1 in hypothalamus of high fear mice. These alterations may contribute to both the behavioral phenotype and higher basal corticosterone in High fear mice. To determine basal brain activity in vivo in High and Low fear mice we used manganese-enhanced magnetic resonance imaging (MEMRI). Analysis revealed a pattern of basal brain activity made up of amygdala, cortical and hippocampal circuits that was elevated in the High line. Ongoing studies also seek to determine the relative balance of excitatory and inhibitory tone in the amygdala and hippocampus and the neuronal structure of its neurons. While these heterogeneous lines are selected on fear memory expression, HPA-axis alterations and differences in hippocampal activity segregate with the behavioral phenotypes. These differences are detectable in a basal state strongly suggesting these are biological traits underlying the behavioral phenotype (Johnson et al, 2011).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present an update on our novel visualization technologies based on cellular immune interaction from both large-scale spatial and temporal perspectives. We do so with a primary motive: to present a visually and behaviourally realistic environment to the community of experimental biologists and physicians such that their knowledge and expertise may be more readily integrated into the model creation and calibration process. Visualization aids understanding as we rely on visual perception to make crucial decisions. For example, with our initial model, we can visualize the dynamics of an idealized lymphatic compartment, with antigen presenting cells (APC) and cytotoxic T lymphocyte (CTL) cells. The visualization technology presented here offers the researcher the ability to start, pause, zoom-in, zoom-out and navigate in 3-dimensions through an idealised lymphatic compartment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite moral prohibitions on hurting other humans, some social contexts allow for harmful actions such as the killing of others. One example is warfare, where killing enemy soldiers is seen as morally justified. Yet, the neural underpinnings distinguishing between justified and unjustified killing are largely unknown. To improve understanding of the neural processes involved in justified and unjustified killing, participants had to imagine being the perpetrator whilst watching “first-person perspective” animated videos where they shot enemy soldiers (‘justified violence’) and innocent civilians (‘unjustified violence’). When participants imagined themselves shooting civilians compared to soldiers, greater activation was found in the lateral orbitofrontal cortex (OFC). Regression analysis revealed that the more guilt participants felt about shooting civilians, the greater the response in the lateral OFC. Effective connectivity analyses further revealed an increased coupling between lateral OFC and the tempoparietal junction (TPJ) when shooting civilians. The results show that the neural mechanisms typically implicated with harming others, such as the OFC, become less active when the violence against a particular group is seen as justified. This study therefore provides unique insight into how normal individuals can become aggressors in specific situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress and abnormal hypothalamic-pituitary-adrenal axis functioning have been implicated in the early phase of psychosis and may partly explain reported changes in brain structure. This study used magnetic resonance imaging to investigate whether biological measures of stress were related to brain structure at baseline and to structural changes over the first 12 weeks of treatment in first episode patients (n=22) compared with matched healthy controls (n=22). At baseline, no significant group differences in biological measures of stress, cortical thickness or hippocampal volume were observed, but a significantly stronger relationship between baseline levels of cortisol and smaller white matter volumes of the cuneus and anterior cingulate was found in patients compared with controls. Over the first 12 weeks of treatment, patients showed a significant reduction in thickness of the posterior cingulate compared with controls. Patients also showed a significant positive relationship between baseline cortisol and increases in hippocampal volume over time, suggestive of brain swelling in association with psychotic exacerbation, while no such relationship was observed in controls. The current findings provide some support for the involvement of stress mechanisms in the pathophysiology of early psychosis, but the changes are subtle and warrant further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dehydroepiandrosterone (DHEA) and its sulphate form (DHEA) are neuroactive steroids with antiglucocorticoid properties. An imbalance in the ratio of cortisol to DHEA(S) has been implicated in the pathophysiology of stress-related psychiatric disorders. This study prospectively investigated circulating cortisol, DHEAS and their ratio in first-episode psychosis (FEP) patients compared to healthy controls, and their relationship to perceived stress, psychotic, negative and mood symptoms. METHODS: Blood cortisol and DHEAS levels were obtained in 39 neuroleptic-naïve or minimally-treated FEP patients and 25 controls. Twenty-three patients and 15 controls received repeat assessments after 12 weeks. Perceived stress was assessed using the Perceived Stress Scale and symptoms were assessed in patients using standard rating scales. RESULTS: At baseline, no differences were observed in cortisol, DHEAS or the cortisol/DHEAS ratio between patients and controls. There were also no group differences in the change in these biological variables during the study period. Within FEP patients, decreases in cortisol and the cortisol/DHEAS ratio over time were directly related to the improvement in depression (r = 0.45; p = 0.031, r = 0.52; p = 0.01), negative (r = 0.51; p = 0.006, r = 0.55; p = 0.008) and psychotic symptoms (cortisol only, r = 0.53; p = 0.01). Perceived stress significantly correlated with DHEAS (r = 0.51; p = 0.019) and the cortisol/DHEAS ratio (r = -0.49; p = 0.024) in controls, but not patients, possibly reflecting an impaired hormonal response to stress in FEP patients. CONCLUSIONS: These findings further support the involvement of the stress system in the pathophysiology of psychotic disorders, with implications for treatment strategies that modulate these neurosteroids.