897 resultados para RADICAL PROSTATECTOMY
Resumo:
Herein we describe our application of the O-directed free radical hydrostannation of disubstituted alkyl-acetylenes (with Ph3SnH and Et3B) to the (+)-pumiliotoxin B total synthesis problem. Specifically, we report on the use of this method in the synthesis of the Overman alkyne 8, and thereby demonstrate the great utility of this process in a complex natural product total synthesis setting for the very first time. We also report here on a new, stereocontrolled, and highly practical enantioselective pathway to Overman's pyrrolidine epoxide partner 9 for 8, which overcomes the previous requirement for use of preparative HPLC to separate the 1:1 mixture of diastereomeric epoxides that was obtained in the original synthesis of 9.
Resumo:
A novel [Ni'S-4'Fe-2(CO)(6)] cluster (1: 'S-4'=(CH3C6H3S2)(2)(CH2)(3)) has been synthesised, structurally characterised and has been shown to undergo a chemically reversible reduction process at -1.31 V versus Fc(+)/Fc to generate the EPR-active monoanion 1(-). Multifrequency Q-, X- and S-band EPR spectra of Ni-61-enriched 1(-) show a well-resolved quartet hyperfine splitting in the low-field region due to the interaction with a single Ni-61 (I = 3/2) nucleus. Simulations of the EPR spectra require the introduction of a single angle of non-coincidence between g, and A(1), and g(3) and A(3) to reproduce all of the features in the S- and X-band spectra. This behaviour provides a rare example of the detection and measurement of non-coincidence effects from frozen-solution EPR spectra without the need for single-crystal measurements, and in which the S-band experiment is sensitive to the non-coincidence. An analysis of the EPR spectra of 1(-) reveals a 24% Ni contribution to the SOMO in 1(-), supporting a delocalisation of the spin-density across the NiFe2 cluster. This observation is supported by IR spectroscopic results which show that the CO stretching frequencies, v(CO), shift to lower frequency by about 70 cm(-1) when 1 is reduced to 1(-). Density functional calculations provide a framework for the interpretation of the spectroscopic properties of 1(-) and suggest that the SOMO is delocalised over the whole cluster, but with little S-centre participation. This electronic structure contrasts with that of the Ni-A, -B, -C and -L forms of [NiFe] hydrogenase in which there is considerable S participation in the SOMO.
Resumo:
One of the important temporal stages of radiation action in cellular systems is the chemical phase, where oxygen fixation reactions compete with chemical repair reactions involving reducing agents such as GSH. Using the gas explosion technique it is possible to follow the kinetics of these fast (> 1 ms) reactions in intact cells. We have compared the chemical repair kinetics of the oxygen-dependent free radical precursors leading to DNA single-strand and double-strand breaks, measured using filter elution techniques, with those leading to cell killing in V79 cells. The chemical repair rates for DNA dsb (670s-1 at pH 7.2 and 380s-1 at pH 9.6) and cell killing (530s-1) were similar. This is in agreement with the important role of DNA dsb in radiation induced cell lethality. The rate for DNA ssb precursors was significantly slower (210s-1). The difference in rate between DNA ssb and dsb precursors may be explained on the basis of a dsb free radical precursor consisting of a paired radical, one radical on each strand. The instantaneous probability of one or other of these radicals being chemically repaired and not proceeding to form a dsb will be twice that of a ssb radical precursor. This agrees well with the concept of locally multiply damaged sites (LMDS) produced from clusters of ionizations in DNA (Ward 1985).
Resumo:
Chinese hamster V79 fibroblasts were irradiated in the gas explosion apparatus and the chemical repair rates of the oxygen-dependent free radical precursors of DNA double-strand breaks (dsb) and lethal lesions measured using filter elution (pH 9.6) and a clonogenic assay. Depletion of cellular GSH levels, from 4.16 fmol/cell to 0.05 fmol/cell, by treatment with buthionine sulphoximine (50 mumol dm-3; 18 h), led to sensitization as regards DNA dsb induction and cell killing. This was evident at all time settings but was particularly pronounced when the oxygen shot was given 1 ms after the irradiation pulse. A detailed analysis of the chemical repair kinetics showed that depletion of GSH led to a reduction in the first-order rate constant for dsb precursors from 385 s-1 to 144 s-1, and for lethal lesion precursors from 533 s-1 to 165 s-1. This is generally consistent with the role of GSH in the repair-fixation model of radiation damage at the critical DNA lesions. However, the reduction in chemical repair rate was not proportional to the severe thiol depletion (down to almost-equal-to 1% for GSH) and a residual repair capacity remained (almost-equal-to 30%). This was found not to be due to compartmentalization of residual GSH in the nucleus, as the repair rate for dsb precursors in isolated nuclei, washed virtually free of GSH, was identical to that found in GSH-depleted cells (144 s-1), also the OER remained substantially above unity. This suggests that other reducing agents may have a role to play in the chemical repair of oxygen-dependent damage. One possible candidate is the significant level of protein sulphydryls present in isolated nuclei.
Resumo:
We have a developed a multiple-radical model of the chemical modification reactions involving oxygen and thiols relevant to the interactions of ionizing radiations with DNA. The treatment is based on the Alper and Howard-Flanders equation but considers the case where more than one radical may be involved in the production of lesions in DNA. This model makes several predictions regarding the induction of double strand breaks in DNA by ionizing radiation and the role of sensitizers such as oxygen and protectors such as thiols which act at the chemical phase of radiation action via the involvement of free radicals. The model predicts a decreasing OER with increasing LET on the basis that as radical multiplicity increases so will the probability that, even under hypoxia, damage will be fixed and lead to lesion production. The model can be considered to provide an alternative hypothesis to those of 'interacting radicals' or of 'oxygen-in-the-track'.
Resumo:
By using a fast reaction technique which employs H2S gas as a fast-reacting chemical repair agent, it is possible to measure the competition kinetics between chemical repair reactions and oxygen fixation reactions in model DNA and cellular systems. In plasmid pBR322 DNA irradiated with electrons, we have compared the oxygen fixation reactions of the free radical precursors that lead to the production of single-strand (SSBs) and double-strand breaks (DSBs). For the oxygen-dependent fixation of radical damage leading to SSBs, a second-order rate constant of 2.3 x 10(8) dm(3) mol(-1) s(-1) was obtained compared to 8.9 x 10(7) dm(3) mol(-1) s(-1) for DSBs. The difference is in general agreement with predictions from a multiple-radical model where the precursor of a DSB originates from two radicals. The fixation of this precursor by oxygen will require both radicals to be fixed for the DSB to be formed, which will have slower kinetics than that of single free-radical precursors of SSBs. (C) 1999 by Radiation Research Society.
Resumo:
NPM has been generally regarded as an administrative reform for which resilience and consequences have been mainly investigated at a country level. Although accounting played a central role in NPM reforms over the last decades, how accounting change actually took place, and through what organizational dynamics, has been under-investigated. This paper adopts a new perspective, archetype theory, and looks into how intra-organizational dynamics (values, interests, power, capabilities) combine with reform processes to influence the outcome of accounting change. Evidence from Italian (disruptive process) and Canadian (sedimented process) municipalities shows that radical change is associated with specific configurations of intra-organizational dynamics.
Resumo:
The purpose of this study was to compare the prostate-specific antigen (PSA) response to either neoadjuvant bicalutamide (BC) monotherapy or neoadjuvant luteinizing hormone-releasing hormone agonist (LHRHa) monotherapy and the subsequent effect on biochemical failure-free survival (BFFS) in men receiving radical radiotherapy (RT) for localized prostate cancer.
Resumo:
a chapter-length piece in a collection which I've co-edited and written the introduction for, which examines class and other tensions in the ranks of the Republican party during and after Reconstruction in South Carolina, with a focus on the confrontation between insurgent former slaves and Party moderates over the social content of the RP programme.
Resumo:
Radical anions of 1-bromo-4-nitrobenzene (p-BrC6H4NO2) are shown to be reactive in the room temperature ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, ([C(4)mPyrr][NTf2]), by means of voltammetric measurements. In particular, they are shown to react via a DISP type mechanism such that the electrolysis of p-BrC6H4NO2 occurs consuming between one and two electrons per reactant molecule, leading to the formation of the nitrobenzene radical anion and bromide ions. This behaviour is a stark contrast to that in conventional non-aqueous solvents such as acetonitrile, dimethyl sulfoxide or N,N-dimethylformamide, which suggests that the ionic solvent promotes the reactivity of the radical anion, probably via stabilisation of the charged products.