978 resultados para Pulse field gel electrophoresis
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane), next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA) and denitrifying (nirK) genes), greenhouse gas flow and several soil physicochemical properties were evaluated. Results: Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Conclusion: Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil. A high impact of land use was observed in soil under the common burnt cane management. The green cane soil also presented different profiles compared to the control soil, but to at a lesser degree.
Resumo:
Iodine chemistry plays an important role in the tropospheric ozone depletion and the new particle formation in the Marine Boundary Layer (MBL). The sources, reaction pathways, and the sinks of iodine are investigated using lab experiments and field observations. The aims of this work are, firstly, to develop analytical methods for iodine measurements of marine aerosol samples especially for iodine speciation in the soluble iodine; secondly, to apply the analytical methods in field collected aerosol samples, and to estimate the characteristics of aerosol iodine in the MBL. Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) was the technique used for iodine measurements. Offline methods using water extraction and Tetra-methyl-ammonium-hydroxide (TMAH) extraction were applied to measure total soluble iodine (TSI) and total insoluble iodine (TII) in the marine aerosol samples. External standard calibration and isotope dilution analysis (IDA) were both conducted for iodine quantification and the limits of detection (LODs) were both 0.1 μg L-1 for TSI and TII measurements. Online couplings of Ion Chromatography (IC)-ICP-MS and Gel electrophoresis (GE)-ICP-MS were both developed for soluble iodine speciation. Anion exchange columns were adopted for IC-ICP-MS systems. Iodide, iodate, and unknown signal(s) were observed in these methods. Iodide and iodate were separated successfully and the LODs were 0.1 and 0.5 μg L-1, respectively. Unknown signals were soluble organic iodine species (SOI) and quantified by the calibration curve of iodide, but not clearly identified and quantified yet. These analytical methods were all applied to the iodine measurements of marine aerosol samples from the worldwide filed campaigns. The TSI and TII concentrations (medians) in PM2.5 were found to be 240.87 pmol m-3 and 105.37 pmol m-3 at Mace Head, west coast of Ireland, as well as 119.10 pmol m-3 and 97.88 pmol m-3 in the cruise campaign over the North Atlantic Ocean, during June – July 2006. Inorganic iodine, namely iodide and iodate, was the minor iodine fraction in both campaigns, accounting for 7.3% (median) and 5.8% (median) in PM2.5 iodine at Mace Head and over the North Atlantic Ocean, respectively. Iodide concentrations were higher than iodate in most of the samples. In the contrast, more than 90% of TSI was SOI and the SOI concentration was correlated significantly with the iodide concentration. The correlation coefficients (R2) were both higher than 0.5 at Mace Head and in the first leg of the cruise. Size fractionated aerosol samples collected by 5 stage Berner impactor cascade sampler showed similar proportions of inorganic and organic iodine. Significant correlations were obtained in the particle size ranges of 0.25 – 0.71 μm and 0.71 – 2.0 μm between SOI and iodide, and better correlations were found in sunny days. TSI and iodide existed mainly in fine particle size range (< 2.0 μm) and iodate resided in coarse range (2.0 – 10 μm). Aerosol iodine was suggested to be related to the primary iodine release in the tidal zone. Natural meteorological conditions such as solar radiation, raining etc were observed to have influence on the aerosol iodine. During the ship campaign over the North Atlantic Ocean (January – February 2007), the TSI concentrations (medians) ranged 35.14 – 60.63 pmol m-3 among the 5 stages. Likewise, SOI was found to be the most abundant iodine fraction in TSI with a median of 98.6%. Significant correlation also presented between SOI and iodide in the size range of 2.0 – 5.9 μm. Higher iodate concentration was again found in the higher particle size range, similar to that at Mace Head. Airmass transport from the biogenic bloom region and the Antarctic ice front sector was observed to play an important role in aerosol iodine enhancement. The TSI concentrations observed along the 30,000 km long cruise round trip from East Asia to Antarctica during November 2005 – March 2006 were much lower than in the other campaigns, with a median of 6.51 pmol m-3. Approximately 70% of the TSI was SOI on average. The abundances of inorganic iodine including iodine and iodide were less than 30% of TSI. The median value of iodide was 1.49 pmol m-3, which was more than four fold higher than that of iodate (median, 0.28 pmol m-3). Spatial variation indicated highest aerosol iodine appearing in the tropical area. Iodine level was considerably lower in coastal Antarctica with the TSI median of 3.22 pmol m-3. However, airmass transport from the ice front sector was correlated with the enhance TSI level, suggesting the unrevealed source of iodine in the polar region. In addition, significant correlation between SOI and iodide was also shown in this campaign. A global distribution in aerosol was shown in the field campaigns in this work. SOI was verified globally ubiquitous due to the presence in the different sampling locations and its high proportion in TSI in the marine aerosols. The correlations between SOI and iodide were obtained not only in different locations but also in different seasons, implying the possible mechanism of iodide production through SOI decomposition. Nevertheless, future studies are needed for improving the current understanding of iodine chemistry in the MBL (e.g. SOI identification and quantification as well as the update modeling involving organic matters).
Resumo:
This paper presents a comparative proteomic analysis of human maternal plasma and amniotic fluid (AF) samples from the same patient at term of pregnancy in order to find specific AF proteins as markers of premature rupture of membranes, a complication frequently observed during pregnancy. Maternal plasma and the corresponding AF were immunodepleted in order to remove the six most abundant proteins before the systematic analysis of their protein composition. The protein samples were then fractionated by IEF Off-Gel electrophoresis (OGE), digested and analyzed with nano-LC-MS/MS separation, revealing a total of 73 and 69 proteins identified in maternal plasma and AF samples, respectively. The proteins identified in AF have been compared to those identified in the mother plasma as well as to the reference human plasma protein list reported by Anderson et al. (Mol. Cell. Proteomics 2004, 3, 311-326). This comparison showed that 26 proteins were exclusively present in AF and not in plasma among which 10 have already been described to be placenta or pregnancy specific. As a further validation of the method, plasma proteins fractionated by OGE and analysed by nano-LC-MS/MS have been compared to the Swiss 2-D PAGE reference map by reconstructing a map that matches 2-D gel and OGE experimental data. This representation shows that 36 of 49 reference proteins could be identified in both data sets, and that isoform shifts in pI are well conserved in the OGE data sets.
Resumo:
Proteomics describes, analogous to the term genomics, the study of the complete set of proteins present in a cell, organ, or organism at a given time. The genome tells us what could theoretically happen, whereas the proteome tells us what does happen. Therefore, a genomic-centered view of biologic processes is incomplete and does not describe what happens at the protein level. Proteomics is a relatively new methodology and is rapidly changing because of extensive advances in the underlying techniques. The core technologies of proteomics are 2-dimensional gel electrophoresis, liquid chromatography, and mass spectrometry. Proteomic approaches might help to close the gap between traditional pathophysiologic and more recent genomic studies, assisting our basic understanding of cardiovascular disease. The application of proteomics in cardiovascular medicine holds great promise. The analysis of tissue and plasma/serum specimens has the potential to provide unique information on the patient. Proteomics might therefore influence daily clinical practice, providing tools for diagnosis, defining the disease state, assessing of individual risk profiles, examining and/or screening of healthy relatives of patients, monitoring the course of the disease, determining the outcome, and setting up individual therapeutic strategies. Currently available clinical applications of proteomics are limited and focus mainly on cardiovascular biomarkers of chronic heart failure and myocardial ischemia. Larger clinical studies are required to test whether proteomics may have promising applications for clinical medicine. Cardiovascular surgeons should be aware of this increasingly pertinent and challenging field of science.
Resumo:
The viral proteins synthesized by a Moloney murine sarcoma virus (Mo-MuSV) with a temperature-sensitive mutation in a function required for the maintenance of the transformed state (ts110) were examined. Normal rat kidney cells (NRK) were infected with the ts110 virus and a non-virus-producing cell clone, termed 6m2, was isolated. This cell clone had a malignant phenotype at 33(DEGREES), the permissive temperature, but changed to a normal phenotype at 39(DEGREES).^ Two viral proteins were detected in 6m2 cells. A 58,000 dalton protein (P58) was detected at both 33(DEGREES) and 39(DEGREES) and contained only core protein (gag) coded sequences. An 85,000 dalton protein (P85) was detected only at 33(DEGREES) and contained sequences of viral core proteins p15, pp12, and part of p30 as well as protein sequences attributed by peptide mapping to P23 and P38, two candidate viral mouse src (v-mos) gene products. These results provide good evidence that P85 is a gag-mos polyprotein. As expected for a functional mos-gene product, P85 synthesis preceded parameters characteristic of the transformed state, including changes in cell morphology, in the cytoplasmic microtubule complex (CMTC) and in the rate of hexose uptake.^ Other studies were conducted to ascertain the defect which prohibited the synthesis of P85 at 39(DEGREES), the non-permissive temperature. When 6m2 cells were treated with actinomycin D at 39(DEGREES) and shifted to 33(DEGREES), the cells were unable to synthesize P85, but P58 continued to be made. P85 mRNA, active at 33(DEGREES), continued to be translated for two to three hours after shifting to 39(DEGREES) as judged by pulse-labeling experiments. Virus harvested at 33(DEGREES) from ts110 MuSV producer cells packaged both P85 and P58 coding RNAs while virus harvested at 39(DEGREES) was deficient in the amount of P85 coding RNA. Agarose gel electrophoresis of 6m2 cellular RNA showed that RNA harvested at 33(DEGREES) contained the 4.0 and 3.5 kb RNAs. Similar experiments on cells maintained at 39(DEGREES) have detected only the 4.0 kb RNA, suggesting that the 3.5 kb RNA codes for P85. The defect appeared to be in the long term stability of the P85 coding RNA at 39(DEGREES), since, in shift-up experiments (33(DEGREES) (--->) 39(DEGREES)), P85 was translated for only three hours at 39(DEGREES), while P58 was synthesized for at least eight hours. However, at 33(DEGREES) in the presence of actinomycin D, the ratio of P85 and P58 synthesis at hourly intervals was similar throughout a 12 hour period. ^
Resumo:
The goal of this study was to investigate the properties of human acid (alpha)-glucosidase with respect to: (i) the molecular heterogeneity of the enzyme and (ii) the synthesis, post-translational modification, and transport of acid (alpha)-glucosidase in human fibroblasts.^ The initial phase of these investigations involved the purification of acid (alpha)-glucosidase from the human liver. Human hepatic acid (alpha)-glucosidase was characterized by isoelectric focusing and native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Four distinct charge forms of hepatic acid (alpha)-glucosidase were separated by chromatofocusing and characterized individually. Charge heterogeneity was demonstrated to result from differences in the polypeptide components of each charge form.^ The second aspect of this research focused on the biosynthesis and the intracellular processing and transport of acid (alpha)-glucosidase in human fibroblasts. These experiments were accomplished by immune precipitation of the biosynthetic intermediates of acid (alpha)-glucosidase from radioactively labeled fibroblasts with polyclonal and monoclonal antibodies raised against human hepatic acid (alpha)-glucosidase. The immune precipitated biosynthetic forms of acid (alpha)-glucosidase were analyzed by SDS-PAGE and autoradiography. The pulse-chase experiments demonstrated the existence of several transient, high molecular weight precursors of acid (alpha)-glucosidase. These precursors were demonstrated to be intermediates of acid (alpha)-glucosidase at different stages of transport and processing in the Golgi apparatus. Other experiments were performed to examine the role of co-translational glycosylation of acid (alpha)-glucosidase in the transport and processing of precursors of this enzyme.^ A specific immunological assay for detecting acid (alpha)-glucosidase was developed using the monoclonal antibodies described above. This method was modified to increase the sensitivity of the assay by utilization of the biotin-avidin amplification system. This method was demonstrated to be more sensitive for detecting human acid (alpha)-glucosidase than the currently used biochemical assay for acid (alpha)-glucosidase activity. It was also demonstrated that the biotin-avidin immunoassay could discriminate between normal and acid (alpha)-glucosidase deficient fibroblasts, thus providing an alternative approach to detecting this inborn error in metabolism. (Abstract shortened with permission of author.) ^
Resumo:
Diarrhea remains a significant cause of worldwide morbidity and mortality. Over 4 million children die of diarrhea annually. Although antibiotics can be used as prophylaxis or for treatment of diarrhea, concern remains over antibiotic resistance. Rifaximin is a semi-synthetic rifamycin derivative that can be used to treat symptoms of infectious diarrhea, inflammatory bowel syndrome, bacterial overgrowth of the small bowel, pouchitis, and fulminant ulcerative colitis. Rifaximin is of particular interest because it is poorly adsorbed in the intestines, shows no indication of inducing bacterial resistance, and has minimal effect on intestinal flora. In order to better understand how rifaximin functions, we sought to compare the protein expression profile of cells pretreated with rifaximin, as compared to cells treated with acetone, rifamycin (control antibiotic), or media (untreated). 2-D gel electrophoresis identified 38 protein spots that were up- or down-regulated by over 2-fold in rifaximin treated cells compared to controls. 16 of these spots were down-regulated, including keratin, annexin A5, intestinal-type alkaline phosphatase, histone h4, and histone-binding protein RbbP4. 22 spots were up-regulated, including heat shock protein HSP 90 alpha, alkaline phosphatase, and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. A better understanding of the functionality of rifaximin will identify additional potential uses for rifaximin and determine for whom the drug is best suited. ^
Resumo:
As part of the PeECE II mesocosm project, we investigated the effects of pCO2 levels on the initial step of heterotrophic carbon cycling in the surface ocean. The activities of microbial extracellular enzymes hydrolyzing 4 polysaccharides were measured during the development of a natural phytoplankton bloom under pCO2 conditions representing glacial (190 µatm) and future (750 µatm) atmospheric pCO2. We observed that (1) chondroitin hydrolysis was variable throughout the pre-, early- and late-bloom phases, (2) fucoidanase activity was measurable only in the glacial mesocosm as the bloom developed, (3) laminarinase activity was low and constant, and (4) xylanase activity declined as the bloom progressed. Concurrent measurements of microbial community composition, using denaturing-gradient gel electrophoresis (DGGE), showed that the 2 mesocosms diverged temporally, and from one another, especially in the late-bloom phase. Enzyme activities correlated with bloom phase and pCO2, suggesting functional as well as compositional changes in microbial communities in the different pCO2 environments. These changes, however, may be a response to temporal changes in the development of phytoplankton communities that differed with the pCO2 environment. We hypothesize that the phytoplankton communities produced dissolved organic carbon (DOC) differing in composition, a hypothesis supported by changing amino acid composition of the DOC, and that enzyme activities responded to changes in substrates. Enzyme activities observed under different pCO2 conditions likely reflect both genetic and population-level responses to changes occurring among multiple components of the microbial loop.
Resumo:
The effects of CO2-induced seawater acidification on plankton communities were also addressed in a series of 3 mesocosm experiments, called the Pelagic Ecosystem CO2 Enrichment (PeECE I-III) studies, which were conducted in the Large-Scale Mesocosm Facilities of the University of Bergen, Norway in 2001, 2003 and 2005, respectively. Each experiment consisted of 9 mesocosms, in which CO2 was manipulated to initial concentrations of 190, 350 and 750 µatm in 2001 and 2003, and 350, 700 and 1050 µatm in 2005. The present dataset concerns PeECE III.
Resumo:
Actualmente, la reducción de materias activas (UE) y la implantación de la nueva Directiva comunitaria 2009/128/ que establece el marco de actuación para conseguir un uso sostenible de los plaguicidas químicos y la preferencia de uso de métodos biológicos, físicos y otros no químicos, obliga a buscar métodos de control menos perjudiciales para el medio ambiente. El control biológico (CB) de enfermedades vegetales empleando agentes de control biológico (ACB) se percibe como una alternativa más segura y con menor impacto ambiental, bien solos o bien como parte de una estrategia de control integrado. El aislado 212 de Penicillium oxalicum (PO212) (ATCC 201888) fue aislado originalmente de la micoflora del suelo en España y ha demostrado ser un eficaz ACB frente a la marchitez vascular del tomate. Una vez identificado y caracterizado el ACB se inició el periodo de desarrollo del mismo poniendo a punto un método de producción en masa de sus conidias. Tras lo cual se inició el proceso de formulación del ACB deshidratando las conidias para su preservación durante un período de tiempo mayor mediante lecho fluido. Finalmente, se han desarrollado algunos formulados que contienen de forma individual diferentes aditivos que han alargado su viabilidad, estabilidad y facilitado su manejo y aplicación. Sin embargo, es necesario seguir trabajando en la mejora de su eficacia de biocontrol. El primer objetivo de esta Tesis se ha centrado en el estudio de la interacción ACB-patógeno-huésped que permita la actuación de P.oxalicum en diferentes patosistemas. Uno de los primeros puntos que se abordan dentro de este objetivo es el desarrollo de nuevas FORMULACIONES del ACB que incrementen su eficacia frente a la marchitez vascular del tomate. Las conidias formuladas de PO212 se obtuvieron por la adición conjunta de distintos aditivos (mojantes, adherentes o estabilizantes) en dos momentos diferentes del proceso de producción/secado: i) antes del proceso de producción (en la bolsa de fermentación) en el momento de la inoculación de las bolsas de fermentación con conidias de PO212 o ii) antes del secado en el momento de la resuspensión de las conidias tras su centrifugación. De las 22 nuevas formulaciones desarrolladas y evaluadas en plantas de tomate en ensayos en invernadero, seis de ellas (FOR22, FOR25, FOR32, FOR35, FOR36 y FOR37) mejoran significativamente (P=0,05) el control de la marchitez vascular del tomate con respecto al obtenido con las conidias secas de P.oxalicum sin aditivos (CSPO) o con el fungicida Bavistin. Los formulados que mejoran la eficacia de las conidias secas sin aditivos son aquellos que contienen como humectantes alginato sódico en fermentación, seguido de aquellos que contienen glicerol como estabilizante en fermentación, y metil celulosa y leche desnatada como adherentes antes del secado. Además, el control de la marchitez vascular del tomate por parte de los formulados de P. oxalicum está relacionado con la fecha de inicio de la enfermedad. Otra forma de continuar mejorando la eficacia de biocontrol es mejorar la materia activa mediante la SELECCIÓN DE NUEVAS CEPAS de P. oxalicum, las cuales podrían tener diferentes niveles de eficacia. De entre las 28 nuevas cepas de P. oxalicum ensayadas en cámara de cultivo, sólo el aislado PO15 muestra el mismo nivel de eficacia que PO212 (62-67% de control) frente a la marchitez vascular del tomate en casos de alta presión de enfermedad. Mientras que, en casos de baja presión de enfermedad todas las cepas de P. oxalicum y sus mezclas demuestran ser eficaces. Finalmente, se estudia ampliar el rango de actuación de este ACB a OTROS HUÉSPEDES Y OTROS PATÓGENOS Y DIFERENTES GRADOS DE VIRULENCIA. En ensayos de eficacia de P. oxalicum frente a aislados de diferente agresividad de Verticillium spp. y Fusarium oxysporum f. sp. lycopersici en plantas de tomate en cámaras de cultivo, se demuestra que la eficacia de PO212 está negativamente correlacionada con el nivel de enfermedad causada por F. oxysporum f. sp. lycopersici pero que no hay ningún efecto diferencial en la reducción de la incidencia ni de la gravedad según la virulencia de los aislados. Sin embargo, en los ensayos realizados con V. dahliae, PO212 causa una mayor reducción de la enfermedad en las plantas inoculadas con aislados de virulencia media. La eficacia de PO212 también era mayor frente a aislados de virulencia media alta de F. oxysporum f. sp. melonis y F. oxysporum f. sp. niveum, en plantas de melón y sandía, respectivamente. En ambos huéspedes se demuestra que la dosis óptima de aplicación del ACB es de 107 conidias de PO212 g-1 de suelo de semillero, aplicada 7 días antes del trasplante. Además, entre 2 y 4 nuevas aplicaciones de PO212 a la raíces de las plantas mediante un riego al terreno de asiento mejoran la eficacia de biocontrol. La eficacia de PO212 no se limita a hongos patógenos vasculares como los citados anteriormente, sino también a otros patógenos como: Phytophthora cactorum, Globodera pallida y G. rostochiensis. PO212 reduce significativamente los síntomas (50%) causados por P. cactorum en plantas de vivero de fresa, tras la aplicación del ACB por inmersión de las raíces antes de su trasplante al suelo de viveros comerciales. Por otra parte, la exposición de los quistes de Globodera pallida y G. rostochiensis (nematodos del quiste de la patata) a las conidias de P. oxalicum, en ensayos in vitro o en microcosmos de suelo, reduce significativamente la capacidad de eclosión de los huevos. Para G. pallida esta reducción es mayor cuando se emplean exudados de raíz de patata del cv. 'Monalisa', que exudados de raíz del cv. 'Desirée'. No hay una reducción significativa en la tasa de eclosión con exudados de raíz de tomate del cv. 'San Pedro'. Para G. rostochiensis la reducción en la tasa de eclosión de los huevos se obtiene con exudados de la raíz de patata del cv. 'Desirée'. El tratamiento con P. oxalicum reduce también significativamente el número de quistes de G. pallida en macetas. Con el fin de optimizar la aplicación práctica de P. oxalicum cepa 212 como tratamiento biológico del suelo, es esencial entender cómo el entorno físico influye en la capacidad de colonización, crecimiento y supervivencia del mismo, así como el posible riesgo que puede suponer su aplicación sobre el resto de los microorganismos del ecosistema. Por ello en este segundo objetivo de esta tesis se estudia la interacción del ACB con el medio ambiente en el cual se aplica. Dentro de este objetivo se evalúa la INFLUENCIA DE LA TEMPERATURA, DISPONIBILIDAD DE AGUA Y PROPIEDADES FÍSICO-QUÍMICAS DE LOS SUELOS (POROSIDAD, TEXTURA, DENSIDAD...) SOBRE LA SUPERVIVENCIA Y EL CRECIMIENTO DE PO212 en condiciones controladas elaborando modelos que permitan predecir el impacto de cada factor ambiental en la supervivencia y crecimiento de P. oxalicum y conocer su capacidad para crecer y sobrevivir en diferentes ambientes. En las muestras de suelo se cuantifica: i) la supervivencia de Penicillium spp. usando el recuento del número de unidades formadoras de colonias en un medio de cultivo semi-selectivo y ii) el crecimiento (biomasa) de PO212 mediante PCR en tiempo real. En los resultados obtenidos se demuestra que P. oxalicum crece y sobrevive mejor en condiciones de sequía independientemente de la temperatura y del tipo de suelo. Si comparamos tipos de suelo P. oxalicum crece y sobrevive en mayor medida en suelos areno-arcillosos con un bajo contenido en materia orgánica, un mayor pH y una menor disponibilidad de fósforo y nitrógeno. La supervivencia y el crecimiento de P. oxalicum se correlaciona de forma negativa con la disponibilidad de agua y de forma positiva con el contenido de materia orgánica. Sólo la supervivencia se correlaciona también positivamente con el pH. Por otro lado se realizan ensayos en suelos de huertos comerciales con diferentes propiedades físico-químicas y diferentes condiciones ambientales para ESTUDIAR EL ESTABLECIMIENTO, SUPERVIVENCIA Y DISPERSIÓN VERTICAL Y MOVILIDAD HORIZONTAL DE PO212. P. oxalicum 212 puede persistir y sobrevivir en esos suelos al menos un año después de su liberación pero a niveles similares a los de otras especies de Penicillium indígenas presentes en los mismos suelos naturales. Además, P. oxalicum 212 muestra una dispersión vertical y movilidad horizontal muy limitada en los diferentes tipos de suelo evaluados. La introducción de P. oxalicum en un ambiente natural no sólo implica su actuación sobre el microorganismo diana, el patógeno, si no también sobre otros microorganismos indígenas. Para EVALUAR EL EFECTO DE LA APLICACIÓN DE P. oxalicum SOBRE LAS POBLACIONES FÚNGICAS INDIGENAS PRESENTES EN EL SUELO de dos huertos comerciales, se analizan mediante electroforesis en gradiente desnaturalizante de poliacrilamida (DGGE) muestras de dichos suelos a dos profundidades (5 y 10 cm) y a cuatro fechas desde la aplicación de P. oxalicum 212 (0, 75, 180 y 365 días). El análisis de la DGGE muestra que las diferencias entre las poblaciones fúngicas se deben significativamente a la fecha de muestreo y son independientes del tratamiento aplicado y de la profundidad a la que se tomen las muestras. Luego, la aplicación del ACB no afecta a la población fúngica de los dos suelos analizados. El análisis de las secuencias de la DGGE confirma los resultados anteriores y permiten identificar la presencia del ACB en los suelos. La presencia de P. oxalicum en el suelo se encuentra especialmente relacionada con factores ambientales como la humedad. Por tanto, podemos concluir que Penicillium oxalicum cepa 212 puede considerarse un óptimo Agente de Control Biológico (ACB), puesto que es ecológicamente competitivo, eficaz para combatir un amplio espectro de enfermedades y no supone un riesgo para el resto de microorganismos fúngicos no diana presentes en el lugar de aplicación. ABSTRACT Currently, reduction of active (EU) and the implementation of the new EU Directive 2009/128 which establishing the framework for action to achieve the sustainable use of chemical pesticides and preference of use of biological, physical and other non-chemical methods, forces to look for control methods less harmful to the environment. Biological control (CB) of plant diseases using biological control agents (BCA) is perceived as a safer alternative and with less environmental impact, either alone or as part of an integrated control strategy. The isolate 212 of Penicillium oxalicum (PO212) (ATCC 201888) was originally isolated from the soil mycoflora in Spain. P. oxalicum is a promising biological control agent for Fusarium wilt and other tomato diseases. Once identified and characterized the BCA, was developed a mass production method of conidia by solid-state fermentation. After determined the process of obtaining a formulated product of the BCA by drying of product by fluid-bed drying, it enables the preservation of the inoculum over a long period of time. Finally, some formulations of dried P. oxalicum conidia have been developed which contain one different additive that have improved their viability, stability and facilitated its handling and application. However, further work is needed to improve biocontrol efficacy. The first objective of this thesis has focused on the study of the interaction BCA- pathogen-host, to allow P.oxalicum to work in different pathosystems. The first point to be addressed in this objective is the development of new FORMULATIONS of BCA which increase their effectiveness against vascular wilt of tomato. PO212 conidial formulations were obtained by the joint addition of various additives (wetting agents, adhesives or stabilizers) at two different points of the production-drying process: i) to substrate in the fermentation bags before the production process, and (ii) to conidial paste obtained after production but before drying. Of the 22 new formulations developed and evaluated in tomato plants in greenhouse tests, six of them (FOR22 , FOR25 , FOR32 , FOR35 , FOR36 and FOR3) improved significantly (P = 0.05) the biocontrol efficacy against tomato wilt with respect to that obtained with dried P.oxalicum conidia without additives (CSPO) or the fungicide Bavistin. The formulations that improve the efficiency of dried conidia without additives are those containing as humectants sodium alginate in the fermentation bags, followed by those containing glycerol as a stabilizer in the fermentation bags, and methylcellulose and skimmed milk as adherents before drying. Moreover, control of vascular wilt of tomatoes by PO212 conidial formulations is related to the date of disease onset. Another way to further improve the effectiveness of biocontrol is to improve the active substance by SELECTION OF NEW STRAINS of P. oxalicum, which may have different levels of effectiveness. Of the 28 new strains of P. oxalicum tested in a culture chamber, only PO15 isolate shows the same effectiveness that PO212 (62-67 % of control) against tomato vascular wilt in cases of high disease pressure. Whereas in cases of low disease pressure all strains of P. oxalicum and its mixtures effective. Finally, we study extend the range of action of this BCA TO OTHER GUESTS AND OTHER PATHOGENS AND DIFFERENT DEGREES OF VIRULENCE. In efficacy trials of P. oxalicum against isolates of different aggressiveness of Verticillium spp. and Fusarium oxysporum f. sp. lycopersici in tomato plants in growth chambers, shows that the efficiency of PO212 is negatively correlated with the level of disease caused by F. oxysporum f. sp. lycopersici. There is not differential effect in reducing the incidence or severity depending on the virulence of isolates. However, PO212 cause a greater reduction of disease in plants inoculated with virulent isolates media of V. dahlia. PO212 efficacy was also higher against isolates of high and average virulence of F. oxysporum f. sp. melonis and F. oxysporum f. sp. niveum in melon and watermelon plants, respectively. In both hosts the optimum dose of the BCA application is 107 conidia PO212 g-1 soil, applied on seedlings 7 days before transplantation into the field. Moreover, the reapplication of PO212 (2-4 times) to the roots by irrigation into the field improve efficiency of biocontrol. The efficacy of PO212 is not limited to vascular pathogens as those mentioned above, but also other pathogens such as Oomycetes (Phytophthora cactorum) and nematodes (Globodera pallida and G. rostochiensis). PO212 significantly reduces symptoms (50 %) caused by P. cactorum in strawberry nursery plants after application of BCA by dipping the roots before transplanting to soil in commercial nurseries. Moreover, the exposure of G. pallida and G. rostochiensis cysts to the conidia of P. oxalicum, in in vitro assays or in soil microcosms significantly reduces hatchability of eggs. The reduction in the rate of G. pallida juveniles hatching was greatest when root diffusates from the `Monalisa´ potato cultivar were used, followed by root diffusates from the `Désirée´ potato cultivar. However, no significant reduction in the rate of G. pallida juveniles hatching was found when root diffusates from the ‘San Pedro” tomato cultivar were used. For G. rostochiensis reduction in the juveniles hatching is obtained from the root diffusates 'Desirée' potato cultivar. Treatment with P. oxalicum also significantly reduces the number of cysts of G. pallida in pots. In order to optimize the practical application of P. oxalicum strain 212 as a biological soil treatment, it is essential to understand how the physical environment influences the BCA colonization, survival and growth, and the possible risk that can cause its application on other microorganisms in the ecosystem of performance. Therefore, the second objective of this thesis is the interaction of the BCA with the environment in which it is applied. Within this objective is evaluated the INFLUENCE OF TEMPERATURE, WATER AVAILABILITY AND PHYSICAL-CHEMICAL PROPERTIES OF SOILS (POROSITY, TEXTURE, DENSITY...) ON SURVIVAL AND GROWTH OF PO212 under controlled conditions to develop models for predicting the environmental impact of each factor on survival and growth of P. oxalicum and to know their ability to grow and survive in different environments. Two parameters are evaluated in the soil samples: i) the survival of Penicillium spp. by counting the number of colony forming units in semi-selective medium and ii) growth (biomass) of PO212 by real-time PCR. P. oxalicum grows and survives better in drought conditions regardless of temperature and soil type. P. oxalicum grows and survives more in sandy loam soils with low organic matter content, higher pH and lower availability of phosphorus and nitrogen. Survival and growth of P. oxalicum negatively correlates with the availability of water and positively with the organic content. Only survival also correlated positively with pH. Moreover, trials are carried out into commercial orchards soils with different physic-chemical properties and different environmental conditions TO STUDY THE ESTABLISHMENT, SURVIVAL, VERTICAL DISPERSION AND HORIZONTAL SPREAD OF PO212. P. oxalicum 212 can persist and survive at very low levels in soil one year after its release. The size of the PO212 population after its release into the tested natural soils is similar to that of indigenous Penicillium spp. Furthermore, the vertical dispersion and horizontal spread of PO212 is limited in different soil types. The introduction of P. oxalicum in a natural environment not only involves their action on the target organism, the pathogen, but also on other indigenous microorganisms. TO ASSESS THE EFFECT OF P. oxalicum APPLICATION ON SOIL INDIGENOUS FUNGAL COMMUNITIES in two commercial orchards, soil samples are analyzed by Denaturing Gradient Gel Electrophoresis polyacrylamide (DGGE). Samples are taken from soil at two depths (5 and 10 cm) and four dates from the application of P. oxalicum 212 (0, 75, 180 and 365 days). DGGE analysis shows that differences are observed between sampling dates and are independent of the treatment of P. oxalicum applied and the depth. BCA application does not affect the fungal population of the two soil analyzed. Sequence analysis of the DGGE bands confirms previous findings and to identify the presence of BCA on soils. The presence of P. oxalicum in soil is especially related to environmental factors such as humidity. Therefore, we conclude that the 212 of strain Penicillium oxalicum can be considered an optimum BCA, since it is environmentally competitive and effective against a broad spectrum of diseases and does not have any negative effect on soil non-target fungi communities.
Resumo:
We have found that it is possible to use labeled peptide nucleic acid (PNA)-oligomers as probes in pre-gel hybridization experiments, as an alternative for Southern hybridization. In this technique, the PNA probe is hybridized to a denatured DNA sample at low ionic strength and the mixture is loaded directly on to an electrophoresis system for size separation. Ensuing gel electrophoresis separates the single-stranded DNA fragments by length. The neutral backbone of PNA allows for hybridization at low ionic strength and imparts very low mobility to excess PNA. Detection of the bound PNA is possible by direct fluorescence detection with capillary electrophoresis, or the DNA/PNA hybrids can be blotted onto a membrane and detected with standard chemiluminescent techniques. Efficient single bp discrimination was achieved routinely using both capillary and slab-gel electrophoresis.
Resumo:
Phyllosphere microbial communities were evaluated on leaves of field-grown plant species by culture-dependent and -independent methods. Denaturing gradient gel electrophoresis (DGGE) with 16S rDNA primers generally indicated that microbial community structures were similar on different individuals of the same plant species, but unique on different plant species. Phyllosphere bacteria were identified from Citrus sinesis (cv. Valencia) by using DGGE analysis followed by cloning and sequencing of the dominant rDNA bands. Of the 17 unique sequences obtained, database queries showed only four strains that had been described previously as phyllosphere bacteria. Five of the 17 sequences had 16S similarities lower than 90% to database entries, suggesting that they represent previously undescribed species. In addition, three fungal species were also identified. Very different 16S rDNA DGGE banding profiles were obtained when replicate cv. Valencia leaf samples were cultured in BIOLOG EcoPlates for 4.5 days. All of these rDNA sequences had 97–100% similarity to those of known phyllosphere bacteria, but only two of them matched those identified by the culture independent DGGE analysis. Like other studied ecosystems, microbial phyllosphere communities therefore are more complex than previously thought, based on conventional culture-based methods.
Resumo:
We have investigated a light-conditional mutant of Chlamydomonas reinhardtii (J12) that is unable to synthesize chlorophyll in the dark with the aim of characterizing the mitochondrial membrane polypeptides of this alga. A crude membrane fraction derived from etiolated cells was analyzed by gel electrophoresis, immunoblot analysis, and pulse-labeling in the presence of specific protein synthesis inhibitors. This fraction contained both mitochondrial and etioplast membranes, and the latter contained appreciable amounts of subunits of the cytochrome b6f complex. The mitochondria-encoded subunit 1 of cytochrome-c oxidase called COX1 was identified, and its synthesis was detected in this membrane fraction. The redox-difference spectra of mitochondrial cytochromes were studied in whole cells and membrane fractions, in both respiratory-competent and -deficient strains. Mitochondrial membranes could be further purified after sucrose gradient centrifugation. The use of etiolated cells and their membrane extracts, in association with appropriate methodologies, opens ways to study the molecular genetics of mitochondria in C. reinhardtii and allows us to address the question of the cooperation established between the three genetic compartments of a plant cell.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06