918 resultados para Psychic suffer
Resumo:
We present a hybrid finite element based methodology to solve the coupled fluid structure problem of squeeze film effects in vibratory MEMS devices, such as gyroscopes, RF switches, and 2D resonators. The aforementioned devices often have a thin plate like structure vibrating normally to a fixed substrate, and are generally not perfectly vacuum packed. This results in a thin air film being trapped between the vibrating plate and the fixed substrate which behaves like a squeeze film offering both stiffness and damping. For accurate modelling of such devices the squeeze film effects must be incorporated. Extensive literature is available on squeeze film modelling, however only a few studies address the coupled fluid elasticity problem. The majority of the studies that account for the plate elasticity coupled with the fluid equation, either use approximate mode shapes for the plate or use iterative solution strategies. In an earlier work we presented a single step coupled methodology using only one type of displacement based element to solve the coupled problem. The displacement based finite element models suffer from locking issues when it comes to modelling very thin structures with the lateral dimensions much larger than the plate thickness as is typical in MEMS devices with squeeze film effects. In this work we present another coupled formulation where we have used hybrid elements to model the structural domain. The numerical results show a huge improvement in convergence and accuracy with coarse hybrid mesh as compared to displacement based formulations. We further compare our numerical results with experimental data from literature and find them to be in good accordance.
Resumo:
A divergence-free velocity field is usually sought in numerical simulations of incompressible fluids. We show that the particle methods that compute a divergence-free velocity field to achieve incompressibility suffer from a volume conservation issue when a finite time-step position update scheme is used. Further, we propose a deformation gradient based approach to arrive at a velocity field that reduces the volume conservation issues in free surface flows and maintains density uniformity in internal flows while retaining the simplicity of first order time updates. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
A routing protocol in a mobile ad hoc network (MANET) should be secure against both the outside attackers which do not hold valid security credentials and the inside attackers which are the compromised nodes in the network. The outside attackers can be prevented with the help of an efficient key management protocol and cryptography. However, to prevent inside attackers, it should be accompanied with an intrusion detection system (IDS). In this paper, we propose a novel secure routing with an integrated localized key management (SR-LKM) protocol, which is aimed to prevent both inside and outside attackers. The localized key management mechanism is not dependent on any routing protocol. Thus, unlike many other existing schemes, the protocol does not suffer from the key management - secure routing interdependency problem. The key management mechanism is lightweight as it optimizes the use of public key cryptography with the help of a novel neighbor based handshaking and Least Common Multiple (LCM) based broadcast key distribution mechanism. The protocol is storage scalable and its efficiency is confirmed by the results obtained from simulation experiments.
Resumo:
Single-phase DC/AC power electronic converters suffer from pulsating power at double the line frequency. The commonest practice to handle the issue is to provide a huge electrolytic capacitor for smoothening out the ripple. But, the electrolytic capacitors having short end of lifetimes limit the overall lifetime of the converter. Another way of handling the ripple power is by active power decoupling (APD) using the storage devices and a set of semiconductor switches. Here, a novel topology has been proposed implementing APD. The topology claims the benefit of 1) reduced stress on converter switches 2) using smaller capacitance value thus alleviating use of electrolytic capacitor in turn improving the lifetime of the converter. The circuit consists of a third leg, a storage capacitor and a storage inductor. The analysis and the simulation results are shown to prove the effectiveness of the topology.
Resumo:
For a multilayered specimen, the back-scattered signal in frequency-domain optical-coherence tomography (FDOCT) is expressible as a sum of cosines, each corresponding to a change of refractive index in the specimen. Each of the cosines represent a peak in the reconstructed tomogram. We consider a truncated cosine series representation of the signal, with the constraint that the coefficients in the basis expansion be sparse. An l(2) (sum of squared errors) data error is considered with an l(1) (summation of absolute values) constraint on the coefficients. The optimization problem is solved using Weiszfeld's iteratively reweighted least squares (IRLS) algorithm. On real FDOCT data, improved results are obtained over the standard reconstruction technique with lower levels of background measurement noise and artifacts due to a strong l(1) penalty. The previous sparse tomogram reconstruction techniques in the literature proposed collecting sparse samples, necessitating a change in the data capturing process conventionally used in FDOCT. The IRLS-based method proposed in this paper does not suffer from this drawback.
Resumo:
The spatial error structure of daily precipitation derived from the latest version 7 (v7) tropical rainfall measuring mission (TRMM) level 2 data products are studied through comparison with the Asian precipitation highly resolved observational data integration toward evaluation of the water resources (APHRODITE) data over a subtropical region of the Indian subcontinent for the seasonal rainfall over 6 years from June 2002 to September 2007. The data products examined include v7 data from the TRMM radiometer Microwave Imager (TMI) and radar precipitation radar (PR), namely, 2A12, 2A25, and 2B31 (combined data from PR and TMI). The spatial distribution of uncertainty from these data products were quantified based on performance metrics derived from the contingency table. For the seasonal daily precipitation over a subtropical basin in India, the data product of 2A12 showed greater skill in detecting and quantifying the volume of rainfall when compared with the 2A25 and 2B31 data products. Error characterization using various error models revealed that random errors from multiplicative error models were homoscedastic and that they better represented rainfall estimates from 2A12 algorithm. Error decomposition techniques performed to disentangle systematic and random errors verify that the multiplicative error model representing rainfall from 2A12 algorithm successfully estimated a greater percentage of systematic error than 2A25 or 2B31 algorithms. Results verify that although the radiometer derived 2A12 rainfall data is known to suffer from many sources of uncertainties, spatial analysis over the case study region of India testifies that the 2A12 rainfall estimates are in a very good agreement with the reference estimates for the data period considered.
Resumo:
Increasing the mutation rate, mu, of viruses above a threshold, mu(c), has been predicted to trigger a catastrophic loss of viral genetic information and is being explored as a novel intervention strategy. Here, we examine the dynamics of this transition using stochastic simulations mimicking within-host HIV-1 evolution. We find a scaling law governing the characteristic time of the transition: tau approximate to 0.6/(mu - mu(c)). The law is robust to variations in underlying evolutionary forces and presents guidelines for treatment of HIV-1 infection with mutagens. We estimate that many years of treatment would be required before HIV-1 can suffer an error catastrophe.
Resumo:
Despite significant advances in recent years, structure-from-motion (SfM) pipelines suffer from two important drawbacks. Apart from requiring significant computational power to solve the large-scale computations involved, such pipelines sometimes fail to correctly reconstruct when the accumulated error in incremental reconstruction is large or when the number of 3D to 2D correspondences are insufficient. In this paper we present a novel approach to mitigate the above-mentioned drawbacks. Using an image match graph based on matching features we partition the image data set into smaller sets or components which are reconstructed independently. Following such reconstructions we utilise the available epipolar relationships that connect images across components to correctly align the individual reconstructions in a global frame of reference. This results in both a significant speed up of at least one order of magnitude and also mitigates the problems of reconstruction failures with a marginal loss in accuracy. The effectiveness of our approach is demonstrated on some large-scale real world data sets.
Resumo:
Single-phase DC/AC power electronic converters suffer from pulsating power at double the line frequency. The commonest practice to handle the issue is to provide a huge electrolytic capacitor for smoothening out the ripple. But, the electrolytic capacitors having short end of lifetimes limit the overall lifetime of the converter. Another way of handling the ripple power is by active power decoupling (APD) using the storage devices and a set of semiconductor switches. Here, a novel topology has been proposed implementing APD. The topology claims the benefit of 1) reduced stress on converter switches 2) using smaller capacitance value thus alleviating use of electrolytic capacitor in turn improving the lifetime of the converter. The circuit consists of a third leg, a storage capacitor and a storage inductor. The analysis and the simulation results are shown to prove the effectiveness of the topology.
Resumo:
In wireless sensor networks (WSNs), contention occurs when two or more nodes in a proximity simultaneously try to access the channel. The contention causes collisions, which are very likely to occur when traffic is correlated. The excessive collision not only affects the reliability and the QoS of the application, but also the lifetime of the network. It is well-known that random access mechanisms do not efficiently handle correlated-contention, and therefore, suffer from high collision rate. Most of the existing TDMA scheduling techniques try to find an optimal or a sub-optimal schedule. Usually, the situation of correlated-contention persists only for a short duration, and therefore, it is not worthwhile to take a long time to generate an optimal or a sub-optimal schedule. We propose a randomized distributed TDMA scheduling (RD-TDMA) algorithm to quickly generate a feasible schedule (not necessarily optimal) to handle correlated-contention in WSNs. In RD-TDMA, a node in the network negotiates a slot with its neighbors using the message exchange mechanism. The proposed protocol has been simulated using the Castalia simulator to evaluate its runtime performance. Simulation results show that the RD-TDMA algorithm considerably reduces the time required to schedule.
Resumo:
Composite materials are very useful in structural engineering particularly in weight sensitive applications. Two different test models of the same structure made from composite materials can display very different dynamic behavior due to large uncertainties associated with composite material properties. Also, composite structures can suffer from pre-existing imperfections like delaminations, voids or cracks during fabrication. In this paper, we show that modeling and material uncertainties in composite structures can cause considerable problein in damage assessment. A recently developed C-0 shear deformable locking free refined composite plate element is employed in the numerical simulations to alleviate modeling uncertainty. A qualitative estimate of the impact of modeling uncertainty on the damage detection problem is made. A robust Fuzzy Logic System (FLS) with sliding window defuzzifier is used for delamination damage detection in composite plate type structures. The FLS is designed using variations in modal frequencies due to randomness in material properties. Probabilistic analysis is performed using Monte Carlo Simulation (MCS) on a composite plate finite element model. It is demonstrated that the FLS shows excellent robustness in delamination detection at very high levels of randomness in input data. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
Resumen: El siguiente texto es la transcripción literal de la recomendación del Comité de Bioética del INCUCAI, [1] elaborada a partir de la demanda del Directorio de la institución en reunión extraordinaria para analizar el requerimiento de excepción para el trasplante pulmonar con donante vivo relacionado en favor de las pacientes hermanas mellizas, M. del V. y M. O., que padecen fibrosis quística, inscriptas en lista de espera para trasplante pulmonar cadavérico. La misma fue expedida en la ciudad de Buenos Aires, el día 1 de septiembre de 2010 y firmada por las coordinadoras del Comité Lic. Roxana Fontana y Mgt. Prof. Beatriz Firmenich y por sus miembros permanentes Dra. Mirta Fernández y Dra. M. E. Barone.
Resumo:
Passivated Hf-In-Zn-O (HIZO) thin film transistors suffer from a negative threshold voltage shift under visible light stress due to persistent photoconductivity (PPC). Ionization of oxygen vacancy sites is identified as the origin of the PPC following observations of its temperature- and wavelength-dependence. This is further corroborated by the photoluminescence spectrum of the HIZO. We also show that the gate voltage can control the decay of PPC in the dark, giving rise to a memory action. © 2010 American Institute of Physics.
Resumo:
El presente trabajo intenta mostrar el desarrollo de la Psicología Positiva (PP), desde su surgimiento (hace una década), como disciplina tendiente al estudio científico del funcionamiento psíquico óptimo de personas, grupos o instituciones, en detrimento del clásico interés en variables psicopatológicas. Se desarrollan los tres pilares de la PP, que constituyen vías de acceso para una vida plena: la vida placentera (incremento de emociones positivas), el compromiso (que puede lograrse experimentando estados de flow) y la vida con significado (aplicación de las fortalezas personales para el desarrollo de algo que trascienda al individuo) (Seligman, 2002). Recientemente, Seligman (2009) agregó un cuarto pilar de estudio: los vínculos positivos (la vida social) como vía de acceso a la felicidad. También se reflexiona sobre las intervenciones psicoterapéuticas en PP encaminadas hacia la mejora de los rasgos positivos, el cultivo de las fortalezas humanas y la ayuda que se da a los clientes para estimular el cambio positivo –y no sólo reducir lo negativo– (Seligman, 2002). Se exponen, además, los medios más usuales de divulgación de las investigaciones en PP y los programas educativos existentes. Por último, se reflexiona acerca del futuro de la PP: si se propone como una especialidad más de la psicología, o si se integra con otros campos del quehacer profesional del psicólogo.
Resumo:
Sequential Monte Carlo (SMC) methods are a widely used set of computational tools for inference in non-linear non-Gaussian state-space models. We propose a new SMC algorithm to compute the expectation of additive functionals recursively. Essentially, it is an on-line or "forward only" implementation of a forward filtering backward smoothing SMC algorithm proposed by Doucet, Godsill and Andrieu (2000). Compared to the standard \emph{path space} SMC estimator whose asymptotic variance increases quadratically with time even under favorable mixing assumptions, the non asymptotic variance of the proposed SMC estimator only increases linearly with time. We show how this allows us to perform recursive parameter estimation using an SMC implementation of an on-line version of the Expectation-Maximization algorithm which does not suffer from the particle path degeneracy problem.