937 resultados para Pseudo-Differential Boundary Problems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a previous paper we have determined a generic formula for the polynomial solution families of the well-known differential equation of hypergeometric type σ(x)y"n(x)+τ(x)y'n(x)-λnyn(x)=0. In this paper, we give another such formula which enables us to present a generic formula for the values of monic classical orthogonal polynomials at their boundary points of definition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Das von Maz'ya eingeführte Approximationsverfahren, die Methode der näherungsweisen Näherungen (Approximate Approximations), kann auch zur numerischen Lösung von Randintegralgleichungen verwendet werden (Randpunktmethode). In diesem Fall hängen die Komponenten der Matrix des resultierenden Gleichungssystems zur Berechnung der Näherung für die Dichte nur von der Position der Randpunkte und der Richtung der äußeren Einheitsnormalen in diesen Punkten ab. Dieses numerisches Verfahren wird am Beispiel des Dirichlet Problems für die Laplace Gleichung und die Stokes Gleichungen in einem beschränkten zweidimensionalem Gebiet untersucht. Die Randpunktmethode umfasst drei Schritte: Im ersten Schritt wird die unbekannte Dichte durch eine Linearkombination von radialen, exponentiell abklingenden Basisfunktionen approximiert. Im zweiten Schritt wird die Integration über den Rand durch die Integration über die Tangenten in Randpunkten ersetzt. Für die auftretende Näherungspotentiale können sogar analytische Ausdrücke gewonnen werden. Im dritten Schritt wird das lineare Gleichungssystem gelöst, und eine Näherung für die unbekannte Dichte und damit auch für die Lösung der Randwertaufgabe konstruiert. Die Konvergenz dieses Verfahrens wird für glatte konvexe Gebiete nachgewiesen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is the numerical treatment of a boundary value problem for the system of Stokes' equations. For this we extend the method of approximate approximations to boundary value problems. This method was introduced by V. Maz'ya in 1991 and has been used until now for the approximation of smooth functions defined on the whole space and for the approximation of volume potentials. In the present paper we develop an approximation procedure for the solution of the interior Dirichlet problem for the system of Stokes' equations in two dimensions. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method and consists of three approximation steps as follows. In a first step the unknown source density in the potential representation of the solution is replaced by approximate approximations. In a second step the decay behavior of the generating functions is used to gain a suitable approximation for the potential kernel, and in a third step Nyström's method leads to a linear algebraic system for the approximate source density. For every step a convergence analysis is established and corresponding error estimates are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider the problem of time-harmonic acoustic scattering in two dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering problems have a computational cost that grows at least linearly as a function of the frequency of the incident wave. Here we present a novel Galerkin boundary element method, which uses an approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh, with smaller elements closer to the corners of the polygon. We prove that the best approximation from the approximation space requires a number of degrees of freedom to achieve a prescribed level of accuracy that grows only logarithmically as a function of the frequency. Numerical results demonstrate the same logarithmic dependence on the frequency for the Galerkin method solution. Our boundary element method is a discretization of a well-known second kind combined-layer-potential integral equation. We provide a proof that this equation and its adjoint are well-posed and equivalent to the boundary value problem in a Sobolev space setting for general Lipschitz domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we review recent progress on the design, analysis and implementation of numerical-asymptotic boundary integral methods for the computation of frequency-domain acoustic scattering in a homogeneous unbounded medium by a bounded obstacle. The main aim of the methods is to allow computation of scattering at arbitrarily high frequency with finite computational resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a class of boundary integral equations that arise in the study of strongly elliptic BVPs in unbounded domains of the form $D = \{(x, z)\in \mathbb{R}^{n+1} : x\in \mathbb{R}^n, z > f(x)\}$ where $f : \mathbb{R}^n \to\mathbb{R}$ is a sufficiently smooth bounded and continuous function. A number of specific problems of this type, for example acoustic scattering problems, problems involving elastic waves, and problems in potential theory, have been reformulated as second kind integral equations $u+Ku = v$ in the space $BC$ of bounded, continuous functions. Having recourse to the so-called limit operator method, we address two questions for the operator $A = I + K$ under consideration, with an emphasis on the function space setting $BC$. Firstly, under which conditions is $A$ a Fredholm operator, and, secondly, when is the finite section method applicable to $A$?

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particle size distribution (psd) is one of the most important features of the soil because it affects many of its other properties, and it determines how soil should be managed. To understand the properties of chalk soil, psd analyses should be based on the original material (including carbonates), and not just the acid-resistant fraction. Laser-based methods rather than traditional sedimentation methods are being used increasingly to determine particle size to reduce the cost of analysis. We give an overview of both approaches and the problems associated with them for analyzing the psd of chalk soil. In particular, we show that it is not appropriate to use the widely adopted 8 pm boundary between the clay and silt size fractions for samples determined by laser to estimate proportions of these size fractions that are equivalent to those based on sedimentation. We present data from field and national-scale surveys of soil derived from chalk in England. Results from both types of survey showed that laser methods tend to over-estimate the clay-size fraction compared to sedimentation for the 8 mu m clay/silt boundary, and we suggest reasons for this. For soil derived from chalk, either the sedimentation methods need to be modified or it would be more appropriate to use a 4 pm threshold as an interim solution for laser methods. Correlations between the proportions of sand- and clay-sized fractions, and other properties such as organic matter and volumetric water content, were the opposite of what one would expect for soil dominated by silicate minerals. For water content, this appeared to be due to the predominance of porous, chalk fragments in the sand-sized fraction rather than quartz grains, and the abundance of fine (<2 mu m) calcite crystals rather than phyllosilicates in the clay-sized fraction. This was confirmed by scanning electron microscope (SEM) analyses. "Of all the rocks with which 1 am acquainted, there is none whose formation seems to tax the ingenuity of theorists so severely, as the chalk, in whatever respect we may think fit to consider it". Thomas Allan, FRS Edinburgh 1823, Transactions of the Royal Society of Edinburgh. (C) 2009 Natural Environment Research Council (NERC) Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we use the no-response test idea, introduced in Luke and Potthast (2003) and Potthast (Preprint) and the inverse obstacle problem, to identify the interface of the discontinuity of the coefficient gamma of the equation del (.) gamma(x)del + c(x) with piecewise regular gamma and bounded function c(x). We use infinitely many Cauchy data as measurement and give a reconstructive method to localize the interface. We will base this multiwave version of the no-response test on two different proofs. The first one contains a pointwise estimate as used by the singular sources method. The second one is built on an energy (or an integral) estimate which is the basis of the probe method. As a conclusion of this, the probe and the singular sources methods are equivalent regarding their convergence and the no-response test can be seen as a unified framework for these methods. As a further contribution, we provide a formula to reconstruct the values of the jump of gamma(x), x is an element of partial derivative D at the boundary. A second consequence of this formula is that the blow-up rate of the indicator functions of the probe and singular sources methods at the interface is given by the order of the singularity of the fundamental solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we show stability and convergence for a novel Galerkin boundary element method approach to the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data. This problem models, for example, outdoor sound propagation over inhomogeneous flat terrain. To achieve a good approximation with a relatively low number of degrees of freedom we employ a graded mesh with smaller elements adjacent to discontinuities in impedance, and a special set of basis functions for the Galerkin method so that, on each element, the approximation space consists of polynomials (of degree $\nu$) multiplied by traces of plane waves on the boundary. In the case where the impedance is constant outside an interval $[a,b]$, which only requires the discretization of $[a,b]$, we show theoretically and experimentally that the $L_2$ error in computing the acoustic field on $[a,b]$ is ${\cal O}(\log^{\nu+3/2}|k(b-a)| M^{-(\nu+1)})$, where $M$ is the number of degrees of freedom and $k$ is the wavenumber. This indicates that the proposed method is especially commendable for large intervals or a high wavenumber. In a final section we sketch how the same methodology extends to more general scattering problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A scale-invariant moving finite element method is proposed for the adaptive solution of nonlinear partial differential equations. The mesh movement is based on a finite element discretisation of a scale-invariant conservation principle incorporating a monitor function, while the time discretisation of the resulting system of ordinary differential equations is carried out using a scale-invariant time-stepping which yields uniform local accuracy in time. The accuracy and reliability of the algorithm are successfully tested against exact self-similar solutions where available, and otherwise against a state-of-the-art h-refinement scheme for solutions of a two-dimensional porous medium equation problem with a moving boundary. The monitor functions used are the dependent variable and a monitor related to the surface area of the solution manifold. (c) 2005 IMACS. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We solve a Dirichlet boundary value problem for the Klein–Gordon equation posed in a time-dependent domain. Our approach is based on a general transform method for solving boundary value problems for linear and integrable nonlinear PDE in two variables. Our results consist of the inversion formula for a generalized Fourier transform, and of the application of this generalized transform to the solution of the boundary value problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hidden Markov Models (HMMs) have been successfully applied to different modelling and classification problems from different areas over the recent years. An important step in using HMMs is the initialisation of the parameters of the model as the subsequent learning of HMM’s parameters will be dependent on these values. This initialisation should take into account the knowledge about the addressed problem and also optimisation techniques to estimate the best initial parameters given a cost function, and consequently, to estimate the best log-likelihood. This paper proposes the initialisation of Hidden Markov Models parameters using the optimisation algorithm Differential Evolution with the aim to obtain the best log-likelihood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differential Evolution (DE) is a tool for efficient optimisation, and it belongs to the class of evolutionary algorithms, which include Evolution Strategies and Genetic Algorithms. DE algorithms work well when the population covers the entire search space, and they have shown to be effective on a large range of classical optimisation problems. However, an undesirable behaviour was detected when all the members of the population are in a basin of attraction of a local optimum (local minimum or local maximum), because in this situation the population cannot escape from it. This paper proposes a modification of the standard mechanisms in DE algorithm in order to change the exploration vs. exploitation balance to improve its behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient algorithm is presented for the solution of the steady Euler equations of gas dynamics. The scheme is based on solving linearised Riemann problems approximately and in more than one dimension incorporates operator splitting. The scheme is applied to a standard test problem of flow down a channel containing a circular arc bump for three different mesh sizes.