986 resultados para Proto-Oncogene Proteins c-myc


Relevância:

100.00% 100.00%

Publicador:

Resumo:

El cáncer de mama en Colombia, es la tercera causa de muerte en la población en general y la segunda en mujeres. En el año 2002 el 40.5% de los casos se presentaron en mujeres menores de 50 años (Pardo, et al. 2003). El cáncer de mama resulta de múltiples factores, entre los que se incluyen cambios sucesivos en el genoma de células epiteliales originalmente normales, que pueden conducir a la activación de oncogenes, inactivación de genes supresores de tumor y pérdida de función de genes reparadores de daños al ADN. Estas alteraciones pueden también ser producto de anomalías cromosómicas tales como monosomías, trisomías, translocaciones, inversiones, pérdida de material genético y amplificaciones que también afectan la expresión de genes (1) (2) (3) (4). Sin embargo, el orden de aparición de los diferentes eventos no está completamente dilucidado. En este estudio se determinaron las anomalías cromosómicas y secuencias de ADN amplificadas en pacientes con cáncer de mama, tanto en muestras de sangre periférica como de tumor de mama de 30 pacientes. En las dos líneas celulares analizadas se observó una alta frecuencia de monosomías principalmente de los cromosomas X, 6, 7, 9, 17, 19 y 22. Hay una asociación entre las monosomías de los cromosomas 17 y 22 con el estado negativo para los receptores de estrógenos y progestágenos (p=0.027, p=0.050). También se encontró asociación entre la monosomía del cromosoma 19 con edad avanzada (p=0.034), observándose formas más agresivas de la enfermedad cuando ésta estuvo presente. Las monosomías fueron características de carcinomas ductales infiltrantes de todos los grados. En los demás tipos de carcinoma su frecuencia fue más baja. En el presente estudio se encontró una asociación significativa entre algunas anomalías cromosómicas y la enfermedad, no reportadas anteriormente, como fueron algunas monosomías, fragilidades y roturas cromosómicas y cromatídicas. La alta frecuencia de fragilidades encontradas tanto en sangre periférica (fra 9q12 p=0.001 y fra 3p14 p= 0.38) como de fragilidades expresadas espontáneamente (no inducidas por el uso de reactivos específicos) en muestras de tumor de mama (fra 1p11 p= 0.001, fra 2q11 p= 0.002), pueden ser el reflejo de una alta inestabilidad cromosómica en el genoma de estos pacientes, mostrando lautilidad de los estudios de fragilidad en la determinación de individuos en alto riesgo de desarrollar cáncer de mama. En ensayos de FISH no se observaron amplificaciones de los genes ERBb2 y c-myc en los pacientes analizados. Esto concuerda con lo encontrado en la literatura en donde se ha reportado, para este tipo de tumores, una sobre expresión de la proteína sin amplificación del gen, explicada por desregulación de la expresión del gen, a su vez posiblemente debida a mutaciones en la región promotora o a alteraciones, que conducen a un aumento de la tasa de transcripción (5) (6) (7). Los resultados obtenidos, aunque preliminares, aportan nuevos marcadores cromosómicos que pueden orientar el diagnóstico, pronóstico y tratamiento de esta patología.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low-molecular-weight (LMW) glutenin subunits are components of the highly cross-linked glutenin polymers that confer viscoelastic properties to gluten and dough. They have both quantitative and qualitative effects on dough quality that may relate to differences in their ability to form the inter-chain disulphide bonds that stabilise the polymers. In order to determine the relationship between dough quality and the amounts and properties of the LMW subunits, we have transformed the pasta wheat cultivars Svevo and Ofanto with three genes encoding proteins, which differ in their numbers or positions of cysteine residues. The transgenes were delivered under control of the high-molecular-weight (HMW) subunit 1Dx5 gene promoter and terminator regions, and the encoded proteins were C-terminally tagged by the introduction of the c-myc epitope. Stable transformants were obtained with both cultivars, and the use of a specific antibody to the c-myc epitope tag allowed the transgene products to be readily detected in the complex mixture of LMW subunits. A range of transgene expression levels was observed. The addition of the epitope tag did not compromise the correct folding of the trangenic subunits and their incorporation into the glutenin polymers. Our results demonstrate that the ability to specifically epitope-tag LMW glutenin transgenes can greatly assist in the elucidation of their individual contributions to the functionality of the complex gluten system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Queilite actínica é a principal lesão pré-neoplásica do lábio. O carcinoma espinocelular do lábio é incluído nas estatísticas brasileiras junto com os cânceres de boca e, em conjunto, somam 40% dos cânceres de cabeça e pescoço. Há certo desconhecimento médico e odontológico em geral quanto aos fatores relacionados à carcinogênese e à progressão de tumores de boca. Genes de supressão tumoral e proteínas regulatórias de proliferação celular exercem papel na evolução da queilite actínica para carcinoma espinocelular e no comportamento biológico deste. O conhecimento de marcadores de diagnóstico e prognóstico e sua investigação têm utilidade no acompanhamento de tais pacientes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene amplification increases the number of genes in a genome and can give rise to karyotype abnormalities called double minutes (DM) and homogeneously staining regions (HSR), both of which have been widely observed in human tumors but are also known to play a major role during embryonic development due to the fact that they are responsible for the programmed increase of gene expression. The etiology of gene amplification during carcinogenesis is not yet completely understood but can be considered a result of genetic instability. Gene amplification leads to an increase in protein expression and provides a selective advantage during cell growth. Oncogenes such as CCND1, c-MET, c-MYC, ERBB2, EGFR and MDM2 are amplified in human tumors and can be associated with increased expression of their respective proteins or not. In general, gene amplification is associated with more aggressive tumors, metastases, resistance to chemotherapy and a decrease in the period during which the patient stays free of the disease. This review discusses the major role of gene amplification in the progression of carcinomas, formation of genetic markers and as possible therapeutic targets for the development of drugs for the treatment of some types of tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skin cancers are the most common human malignant neoplasia and their incidence is growing, chiefly in tropical countries. There is evidence that ultraviolet (UV) radiation present in sunlight is important for genetic damage. Mutations due to such damage could be responsible for alterations in oncogenes and tumor suppressor genes. Recent studies have reported remarkable differences in mutation frequency of the RAS proto-oncogene in non-melanoma skin cancers. These findings may reflect differences in the molecular epidemiology of cutaneous tumors found in geographical areas with diverse sun exposure and ethnical origins of their populations. Our study proposed to perform molecular analyses of skin tumors on patients living in southeastern Brazil, in areas with high levels of sun exposure. DNA from eight solar keratose (SK), 26 basal cell carcinomas (BCC) and 19 squamous cell carcinomas (SCC) was submitted to PCR-SSCP analysis for codons 12, 13 and 61. Contradicting other authors, we found no mutations in codons 12,13 but detected two BCCs and one SCC with a mutation in codon 61. These findings suggest that the activation of KRAS oncogene may contribute to the pathogenicity of cutaneous lesions in southeastern Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hirschsprung disease is a congenital form of aganglionic megacolon that results from cristopathy. Hirschsprung disease usually occurs as a sporadic disease, although it may be associated with several inherited conditions, such as multiple endocrine neoplasia type 2. The rearranged during transfection (RET) proto-oncogene is the major susceptibility gene for Hirschsprung disease, and germline mutations in RET have been reported in up to 50% of the inherited forms of Hirschsprung disease and in 15-20% of sporadic cases of Hirschsprung disease. The prevalence of Hirschsprung disease in multiple endocrine neoplasia type 2 cases was recently determined to be 7.5% and the cooccurrence of Hirschsprung disease and multiple endocrine neoplasia type 2 has been reported in at least 22 families so far. It was initially thought that Hirschsprung disease could be due to disturbances in apoptosis or due to a tendency of the mutated RET receptor to be retained in the Golgi apparatus. Presently, there is strong evidence favoring the hypothesis that specific inactivating haplotypes play a key role in the fetal development of congenital megacolon/Hirschsprung disease. In the present study, we report the genetic findings in a novel family with multiple endocrine neoplasia type 2: a specific RET haplotype was documented in patients with Hirschsprung disease associated with medullary thyroid carcinoma, but it was absent in patients with only medullary thyroid carcinoma. Despite the limited number of cases, the present data favor the hypothesis that specific haplotypes not linked to RET germline mutations are the genetic causes of Hirschsprung disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Myc oncoproteins belong to a family of transcription factors composed by Myc, N-Myc and L-Myc. The most studied components of this family are Myc and N-Myc because their expressions are frequently deregulated in a wide range of cancers. These oncoproteins can act both as activators or repressors of gene transcription. As activators, they heterodimerize with Max (Myc associated X-factor) and the heterodimer recognizes and binds a specific sequence elements (E-Box) onto gene promoters recruiting histone acetylase and inducing transcriptional activation. Myc-mediated transcriptional repression is a quite debated issue. One of the first mechanisms defined for the Myc-mediated transcriptional repression consisted in the interaction of Myc-Max complex Sp1 and/or Miz1 transcription factors already bound to gene promoters. This interaction may interfere with their activation functions by recruiting co-repressors such as Dnmt3 or HDACs. Moreover, in the absence of , Myc may interfere with the Sp1 activation function by direct interaction and subsequent recruitment of HDACs. More recently the Myc/Max complex was also shown to mediate transcriptional repression by direct binding to peculiar E-box. In this study we analyzed the role of Myc overexpression in Osteosarcoma and Neuroblastoma oncogenesis and the mechanisms underling to Myc function. Myc overexpression is known to correlate with chemoresistance in Osteosarcoma cells. We extended this study by demonstrating that c-Myc induces transcription of a panel of ABC drug transporter genes. ABCs are a large family trans-membrane transporter deeply involved in multi drug resistance. Furthermore expression levels of Myc, ABCC1, ABCC4 and ABCF1 were proved to be important prognostic tool to predict conventional therapy failure. N-Myc amplification/overexpression is the most important prognostic factor for Neuroblastoma. Cyclin G2 and Clusterin are two genes often down regulated in neuroblastoma cells. Cyclin G2 is an atypical member of Cyclin family and its expression is associated with terminal differentiation and apoptosis. Moreover it blocks cell cycle progression and induces cell growth arrest. Instead, CLU is a multifunctional protein involved in many physiological and pathological processes. Several lines of evidences support the view that CLU may act as a tumour suppressor in Neuroblastoma. In this thesis I showed that N-Myc represses CCNG2 and CLU transcription by different mechanisms. • N-Myc represses CCNG2 transcription by directly interacting with Sp1 bound in CCNG2 promoter and recruiting HDAC2. Importantly, reactivation of CCNG2 expression through epigenetic drugs partially reduces N-Myc and HDAC2 mediated cell proliferation. • N-Myc/Max complex represses CLU expression by direct binding to a peculiar E-box element on CLU promoter and by recruitment of HDACs and Polycomb Complexes, to the CLU promoter. Overall our findings strongly support the model in which Myc overexpression/amplification may contribute to some aspects of oncogenesis by a dual action: i) transcription activation of genes that confer a multidrug resistant phenotype to cancer cells; ii), transcription repression of genes involved in cell cycle inhibition and cellular differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MYC is a transcription factor that can activate transcription of several targets by direct binding to their promoters at specific DNA sequences (E-box). Recent findings have also shown that it can exert its biological role by repressing transcription of other set of genes. C-MYC can mediate repression on its target genes through interaction with factors bound to promoter regions but not through direct recognition of typical E-Boxes. In this thesis, we investigated whether MYCN can also repress gene transcription and how this is mechanistically achieved. Moreover, expression of TRKA, P75NTR and ABCC3 is attenuated in aggressive MYCN-amplified tumors, suggesting a causal link between elevated MYCN activity and transcriptional repression of these three genes. We found that MYCN is physically associated with gene promoters in vivo in proximity of the transcriptional start sites and this association requires interactions with SP1 and/or MIZ-1. Furthermore, we show that this interaction could interfere with SP1 and MIZ-1 activation functions by recruiting co-repressors such as DNMT3a or HDACs. Studies in vitro suggest that MYCN interacts through distinct domains with SP1, MIZ-1 and HDAC1 supporting the idea that MYCN may form different complexes by interacting with different proteins. Re-expression of endogenous TRKA and P75NTR with exposure to the TSA sensitizes neuroblastoma to NGF-mediated apoptosis, whereas ectopic expression of ABCC3 decreases cell motility without interfering with growth. Finally, using shRNA whole genome library, we dissected the P75NTR repression trying to identify novel factors inside and/or outside MYCN complex for future therapeutic approaches. Overall, our results support a model in which MYCN can repress gene transcription by direct interaction with SP1 and/or MIZ-1, and provide further lines of evidence on the importance of transcriptional repression induced by Myc in tumor biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent finding that MYC-driven cancers are sensitive to inhibition of the DNA damage response (DDR) pathway, prompted us to investigate the role of DDR pathway as therapeutic target in diffuse large B-cell lymphoma (DLBCL), which frequently overexpresses the MYC oncogene. In a preliminary immunohistochemical study conducted on 99 consecutive DLBCL patients, we found that about half of DLBCLs showed constitutive expression of the phosphorylated forms of checkpoint kinases (CHK) and CDC25c, markers of DDR activation, and of phosphorylated histone H2AX (γH2AX), marker of DNA damage and genomic instability. Constitutive γH2AX expression correlated with c-MYC levels and DDR activation, and defined a subset of tumors characterised by poor outcome. Next, we used the CHK inhibitor PF-0477736 as a tool to investigate whether the inhibition of the DDR pathway might represent a novel therapeutic approach in DLBCL. Submicromolar concentrations of PF-0477736 hindered proliferation in DLBCL cell lines with activated DDR pathway. These results were fully recapitulated with a different CHK inhibitor (AZD-7762). Inhibition of checkpoint kinases induced rapid DNA damage accumulation and apoptosis in DLBCL cell lines and primary cells. These data suggest that pharmacologic inhibition of DDR through targeting of CHK kinases may represent a novel therapeutic strategy in DLBCL. The second part of this work is the clinical, molecular and functional description of a paradigmatic case of primary refractory Burkitt lymphoma characterized by spatial intratumor heterogeneity for the TP53 mutational status, high expression levels of genomic instability and DDR activation markers, primary resistance to chemotherapy and exquisite sensitivity to DDR inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The c-Src kinase regulates cancer cell invasion through inhibitor of DNA binding/differentiation 1 (ID1). Src and ID1 are frequently overexpressed in human lung adenocarcinoma. The current study aimed at identifying microRNAs (miRNAs) involved in the Src-ID1 signaling in lung cancer. Incubation of lung cancer cells with the Src inhibitor saracatinib led to the upregulation of several miRNAs including miR-29b, which was the most highly upregulated miRNA with predicted binding to the ID1 3'-untranslated region (UTR). Luciferase reporter assays confirmed direct binding of miR-29b to the ID1 3'-UTR. Expression of miR-29b suppressed ID1 levels and significantly reduced migration and invasion. Expression of antisense-miR-29b (anti-miR-29b), on the other hand, enhanced ID1 mRNA and protein levels, and significantly increased lung cancer cell migration and invasion, a hallmark of the Src-ID1 pathway. The ectopic expression of ID1 in miR-29b-overexpressing cells was able to rescue the migratory potential of these cells. Both, anti-miR-29b and ID1 overexpression diminished the effects of the Src inhibitors saracatinib and dasatinib on migration and invasion. Saracatinib and dasatinib decreased c-Myc transcriptional repression on miR-29b and led to increased ID1 protein levels, whereas forced expression of c-Myc repressed miR-29b and induced ID1. In agreement, we showed direct recruitment of c-Myc to the miR-29b promoter. miR-29b was significantly downregulated in primary lung adenocarcinoma samples compared with matched alveolar lung tissue, and miR-29b expression was a significant prognostic factor for patient outcome. These results suggest that miR-29b is involved in the Src-ID1 signaling pathway, is dysregulated in lung adenocarcinoma and is a potential predictive marker for Src kinase inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous work has shown that c-Myc is required for adequate vasculogenesis and angiogenesis. To further investigate the contribution of Myc to these processes, we conditionally expressed c-Myc in embryonic endothelial cells using a tetracycline-regulated system. Endothelial Myc overexpression resulted in severe defects in the embryonic vascular system. Myc-expressing embryos undergo widespread edema formation and multiple hemorrhagic lesions. They die between embryonic days 14.5 and 17.5. The changes in vascular permeability are not caused by deficiencies in vascular basement membrane composition or pericyte coverage. However, the overall turnover of endothelial cells is elevated as is revealed by increased levels of both proliferation and apoptosis. Whole-mount immunohistochemical analysis revealed alterations in the architecture of capillary networks. The dermal vasculature of Myc-expressing embryos is characterized by a reduction in vessel branching, which occurs despite upregulation of the proangiogenic factors vascular endothelial growth factor-A and angiopoietin-2. Thus, the net outcome of an excess of vascular endothelial growth factor-A and angiopoietin-2 in the face of an elevated cellular turnover appears to be a defect in vascular integrity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expression pattern of angiotensin AT2 receptors with predominance during fetal life and upregulation under pathological conditions during tissue injury/repair process suggests that AT2 receptors may exert an important action in injury/repair adaptive mechanisms. Less is known about AT2 receptors in acute ischemia-induced cardiac injury. We aimed here to elucidate the role of AT2 receptors after acute myocardial infarction. Double immunofluorescence staining showed that cardiac AT2 receptors were mainly detected in clusters of small c-kit+ cells accumulating in peri-infarct zone and c-kit+AT2+ cells increased in response to acute cardiac injury. Further, we isolated cardiac c-kit+AT2+ cell population by modified magnetic activated cell sorting and fluorescence activated cell sorting. These cardiac c-kit+AT2+ cells, represented approximately 0.19% of total cardiac cells in infarcted heart, were characterized by upregulated transcription factors implicated in cardiogenic differentiation (Gata-4, Notch-2, Nkx-2.5) and genes required for self-renewal (Tbx-3, c-Myc, Akt). When adult cardiomyocytes and cardiac c-kit+AT2+ cells isolated from infarcted rat hearts were cocultured, AT2 receptor stimulation in vitro inhibited apoptosis of these cocultured cardiomyocytes. Moreover, in vivo AT2 receptor stimulation led to an increased c-kit+AT2+ cell population in the infarcted myocardium and reduced apoptosis of cardiomyocytes in rats with acute myocardial infarction. These data suggest that cardiac c-kit+AT2+ cell population exists and increases after acute ischemic injury. AT2 receptor activation supports performance of cardiomyocytes, thus contributing to cardioprotection via cardiac c-kit+AT2+ cell population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoid malignancy representing 5-10% of all non-Hodgkin’s lymphomas. It is distinguished by the t(11;14)(q13;q32) chromosomal translocation that juxtaposes the proto-oncogene CCND1, which encodes cyclin D1 at 11q13 to the IgH gene at 14q32. MCL patients represent about 6% of all new cases of Non-Hodgkin’s lymphomas per year or about 3,500 new cases per year. MCL occurs more frequently in older adults – the average age at diagnosis is the mid-60s with a male-to-female ratio of 2-3:1. It is typically characterized by the proliferation of neoplastic B-lymphocytes in the mantle zone of the lymph node follicle that have a prominent inclination to disseminate to other lymphoid tissues, bone marrow, peripheral blood and other organs. MCL patients have a poor prognosis because they develop resistance/relapse to current non-specific therapeutic regimens. It is of note that the exact molecular mechanisms underlying the pathogenesis of MCL are not completely known. It is reasonable to anticipate that better characterization of these mechanisms could lead to the development of specific and likely more effective therapeutics to treat this aggressive disease. The type I insulin-like growth factor receptor (IGF-IR) is thought to be a key player in several different solid malignancies such as those of the prostate, breast, lung, ovary, skin and soft tissue. In addition, recent studies in our lab showed evidence to support a pathogenic role of IGF-IR in some types of T-cell lymphomas and chronic myeloid leukemia. Constitutively active IGF-IR induces its oncogenic effects through the inhibition of apoptosis and induction of transformation, metastasis, and angiogenesis. Previous studies have shown that signaling through IGF-IR leads to the vi activation of multiple signaling transduction pathways mediated by the receptor-associated tyrosine kinase domain. These pathways include PI3K/Akt, MAP kinase, and Jak/Stat. In the present study, we tested the possible role of IGF-IR in MCL. Our results demonstrate that IGF-IR is over-expressed in mantle cell lymphoma cell lines compared with normal peripheral blood B- lymphocytes. Furthermore, inhibition of IGF-IR by the cyclolignan picropodophyllin (PPP) decreased cell viability and cell proliferation in addition to induction of apoptosis and G2/M cell cycle arrest. Screening of downstream oncogenes and apoptotic proteins that are involved in both IGF-IR and MCL signaling after treatment with PPP or IGF-IR siRNA showed significant alterations that are consistent with the cellular changes observed after PPP treatment. Therefore, our findings suggest that IGF-IR signaling contributes to the survival of MCL and thus may prove to be a legitimate therapeutic target in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neuronal repressor REST (RE1-silencing transcription factor; also called NRSF) is expressed at high levels in mouse embryonic stem (ES) cells, but its role in these cells is unclear. Here we show that REST maintains self-renewal and pluripotency in mouse ES cells through suppression of the microRNA miR-21. We found that, as with known self-renewal markers, the level of REST expression is much higher in self-renewing mouse ES cells than in differentiating mouse ES (embryoid body, EB) cells. Heterozygous deletion of Rest (Rest+/-) and its short-interfering-RNA-mediated knockdown in mouse ES cells cause a loss of self-renewal-even when these cells are grown under self-renewal conditions-and lead to the expression of markers specific for multiple lineages. Conversely, exogenously added REST maintains self-renewal in mouse EB cells. Furthermore, Rest+/- mouse ES cells cultured under self-renewal conditions express substantially reduced levels of several self-renewal regulators, including Oct4 (also called Pou5f1), Nanog, Sox2 and c-Myc, and exogenously added REST in mouse EB cells maintains the self-renewal phenotypes and expression of these self-renewal regulators. We also show that in mouse ES cells, REST is bound to the gene chromatin of a set of miRNAs that potentially target self-renewal genes. Whereas mouse ES cells and mouse EB cells containing exogenously added REST express lower levels of these miRNAs, EB cells, Rest+/- ES cells and ES cells treated with short interfering RNA targeting Rest express higher levels of these miRNAs. At least one of these REST-regulated miRNAs, miR-21, specifically suppresses the self-renewal of mouse ES cells, corresponding to the decreased expression of Oct4, Nanog, Sox2 and c-Myc. Thus, REST is a newly discovered element of the interconnected regulatory network that maintains the self-renewal and pluripotency of mouse ES cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF) is known to have antiproliferative effects on a wide variety of tumor cells but proliferative effects on normal cells. However, the molecular basis for such differences in the action of TNF are unknown. The overall objectives of my research are to investigate the role of oncogenes in TNF sensitivity and delineate some of the molecular mechanisms involved in TNF sensitivity and resistance. To accomplish these objectives, I transfected TNF-resistant C3H mouse embryo fibroblasts (10T1/2) with an activated Ha-ras oncogene and determined whether these cells exhibit altered sensitivity to TNF. The results indicated that 10T1/2 cells transfected with an activated Ha-ras oncogene (10T-EJ) not only produced tumors in nude mice but also exhibited extreme sensitivity to cytolysis by TNF. In contrast, 10T1/2 cells transfected with the pSV2-neo gene alone were resistant to the cytotoxic effects of TNF. I also found that TNF-induced cell death was mediated through apoptosis. The differential sensitivity of 10T1/2 and 10T-EJ cell lines to TNF was not due to differences in the number of TNF receptors on their cell surface. In addition, TNF-resistant revertants isolated from Ha-ras-transformed, TNF-sensitive cells still expressed the same amount of p21 as TNF-sensitive cells and were still tumorigenic, suggesting that Ha-ras-induced transformation and TNF sensitivity may follow different pathways. Interestingly, TNF-resistant but not sensitive cells expressed higher levels of bcl-2, c-myc, and manganese superoxide dismutase (MnSOD) mRNA following exposure to TNF. However, TNF treatment resulted in a marginal induction of p53 mRNA in both TNF-sensitive and resistant cells. Based on these results I can conclude that (i) Ha-ras oncogene induces both transformation and TNF sensitivity, (ii) TNF-induced cytotoxicity involves apoptosis, and (iii) TNF-induced upregulation of bcl-2, c-myc, and MnSOD genes is associated with TNF resistance in C3H mouse embryo fibroblasts. ^