669 resultados para Programmable calculators.
Resumo:
Physically Unclonable Functions (PUFs), exploit inherent manufacturing variations and present a promising solution for hardware security. They can be used for key storage, authentication and ID generations. Low power cryptographic design is also very important for security applications. However, research to date on digital PUF designs, such as Arbiter PUFs and RO PUFs, is not very efficient. These PUF designs are difficult to implement on Field Programmable Gate Arrays (FPGAs) or consume many FPGA hardware resources. In previous work, a new and efficient PUF identification generator was presented for FPGA. The PUF identification generator is designed to fit in a single slice per response bit by using a 1-bit PUF identification generator cell formed as a hard-macro. In this work, we propose an ultra-compact PUF identification generator design. It is implemented on ten low-cost Xilinx Spartan-6 FPGA LX9 microboards. The resource utilization is only 2.23%, which, to the best of the authors' knowledge, is the most compact and robust FPGA-based PUF identification generator design reported to date. This PUF identification generator delivers a stable range of uniqueness of around 50% and good reliability between 85% and 100%.
Resumo:
Field programmable gate array devices boast abundant resources with which custom accelerator components for signal, image and data processing may be realised; however, realising high performance, low cost accelerators currently demands manual register transfer level design. Software-programmable ’soft’ processors have been proposed as a way to reduce this design burden but they are unable to support performance and cost comparable to custom circuits. This paper proposes a new soft processing approach for FPGA which promises to overcome this barrier. A high performance, fine-grained streaming processor, known as a Streaming Accelerator Element, is proposed which realises accelerators as large scale custom multicore networks. By adopting a streaming execution approach with advanced program control and memory addressing capabilities, typical program inefficiencies can be almost completely eliminated to enable performance and cost which are unprecedented amongst software-programmable solutions. When used to realise accelerators for fast fourier transform, motion estimation, matrix multiplication and sobel edge detection it is shown how the proposed architecture enables real-time performance and with performance and cost comparable with hand-crafted custom circuit accelerators and up to two orders of magnitude beyond existing soft processors.
Resumo:
There is demand for an easily programmable, high performance image processing platform based on FPGAs. In previous work, a novel, high performance processor - IPPro was developed and a Histogram of Orientated Gradients (HOG) algorithm study undertaken on a Xilinx Zynq platform. Here, we identify and explore a number of mapping strategies to improve processing efficiency for soft-cores and a number of options for creation of a division coprocessor. This is demonstrated for the revised high definition HOG implementation on a Zynq platform, resulting in a performance of 328 fps which represents a 146% speed improvement over the original realization and a tenfold reduction in energy.
Resumo:
Software-programmable `soft' processors have shown tremendous potential for efficient realisation of high performance signal processing operations on Field Programmable Gate Array (FPGA), whilst lowering the design burden by avoiding the need to design fine-grained custom circuit archi-tectures. However, the complex data access patterns, high memory bandwidth and computational requirements of sliding window applications, such as Motion Estimation (ME) and Matrix Multiplication (MM), lead to low performance, inefficient soft processor realisations. This paper resolves this issue, showing how by adding support for block data addressing and accelerators for high performance loop execution, performance and resource efficiency over four times better than current best-in-class metrics can be achieved. In addition, it demonstrates the first recorded real-time soft ME estimation realisation for H.263 systems.
Resumo:
Pre-processing (PP) of received symbol vector and channel matrices is an essential pre-requisite operation for Sphere Decoder (SD)-based detection of Multiple-Input Multiple-Output (MIMO) wireless systems. PP is a highly complex operation, but relative to the total SD workload it represents a relatively small fraction of the overall computational cost of detecting an OFDM MIMO frame in standards such as 802.11n. Despite this, real-time PP architectures are highly inefficient, dominating the resource cost of real-time SD architectures. This paper resolves this issue. By reorganising the ordering and QR decomposition sub operations of PP, we describe a Field Programmable Gate Array (FPGA)-based PP architecture for the Fixed Complexity Sphere Decoder (FSD) applied to 4 × 4 802.11n MIMO which reduces resource cost by 50% as compared to state-of-the-art solutions whilst maintaining real-time performance.
Resumo:
The increasing design complexity associated with modern Field Programmable Gate Array (FPGA) has prompted the emergence of 'soft'-programmable processors which attempt to replace at least part of the custom circuit design problem with a problem of programming parallel processors. Despite substantial advances in this technology, its performance and resource efficiency for computationally complex operations remains in doubt. In this paper we present the first recorded implementation of a softcore Fast-Fourier Transform (FFT) on Xilinx Virtex FPGA technology. By employing a streaming processing architecture, we show how it is possible to achieve architectures which offer 1.1 GSamples/s throughput and up to 19 times speed-up against the Xilinx Radix-2 FFT dedicated circuit with comparable cost.
Resumo:
Current data-intensive image processing applications push traditional embedded architectures to their limits. FPGA based hardware acceleration is a potential solution but the programmability gap and time consuming HDL design flow is significant. The proposed research approach to develop “FPGA based programmable hardware acceleration platform” that uses, large number of Streaming Image processing Processors (SIPPro) potentially addresses these issues. SIPPro is pipelined in-order soft-core processor architecture with specific optimisations for image processing applications. Each SIPPro core uses 1 DSP48, 2 Block RAMs and 370 slice-registers, making the processor as compact as possible whilst maintaining flexibility and programmability. It is area efficient, scalable and high performance softcore architecture capable of delivering 530 MIPS per core using Xilinx Zynq SoC (ZC7Z020-3). To evaluate the feasibility of the proposed architecture, a Traffic Sign Recognition (TSR) algorithm has been prototyped on a Zedboard with the color and morphology operations accelerated using multiple SIPPros. Simulation and experimental results demonstrate that the processing platform is able to achieve a speedup of 15 and 33 times for color filtering and morphology operations respectively, with a significant reduced design effort and time.
Resumo:
Homomorphic encryption offers potential for secure cloud computing. However due to the complexity of homomorphic encryption schemes, performance of implemented schemes to date have been unpractical. This work investigates the use of hardware, specifically Field Programmable Gate Array (FPGA) technology, for implementing the building blocks involved in somewhat and fully homomorphic encryption schemes in order to assess the practicality of such schemes. We concentrate on the selection of a suitable multiplication algorithm and hardware architecture for large integer multiplication, one of the main bottlenecks in many homomorphic encryption schemes. We focus on the encryption step of an integer-based fully homomorphic encryption (FHE) scheme. We target the DSP48E1 slices available on Xilinx Virtex 7 FPGAs to ascertain whether the large integer multiplier within the encryption step of a FHE scheme could fit on a single FPGA device. We find that, for toy size parameters for the FHE encryption step, the large integer multiplier fits comfortably within the DSP48E1 slices, greatly improving the practicality of the encryption step compared to a software implementation. As multiplication is an important operation in other FHE schemes, a hardware implementation using this multiplier could also be used to improve performance of these schemes.
Resumo:
Field programmable gate array (FPGA) technology is a powerful platform for implementing computationally complex, digital signal processing (DSP) systems. Applications that are multi-modal, however, are designed for worse case conditions. In this paper, genetic sequencing techniques are applied to give a more sophisticated decomposition of the algorithmic variations, thus allowing an unified hardware architecture which gives a 10-25% area saving and 15% power saving for a digital radar receiver.
Resumo:
Emerging web applications like cloud computing, Big Data and social networks have created the need for powerful centres hosting hundreds of thousands of servers. Currently, the data centres are based on general purpose processors that provide high flexibility buts lack the energy efficiency of customized accelerators. VINEYARD aims to develop an integrated platform for energy-efficient data centres based on new servers with novel, coarse-grain and fine-grain, programmable hardware accelerators. It will, also, build a high-level programming framework for allowing end-users to seamlessly utilize these accelerators in heterogeneous computing systems by employing typical data-centre programming frameworks (e.g. MapReduce, Storm, Spark, etc.). This programming framework will, further, allow the hardware accelerators to be swapped in and out of the heterogeneous infrastructure so as to offer high flexibility and energy efficiency. VINEYARD will foster the expansion of the soft-IP core industry, currently limited in the embedded systems, to the data-centre market. VINEYARD plans to demonstrate the advantages of its approach in three real use-cases (a) a bio-informatics application for high-accuracy brain modeling, (b) two critical financial applications, and (c) a big-data analysis application.
Resumo:
NanoStreams explores the design, implementation,and system software stack of micro-servers aimed at processingdata in-situ and in real time. These micro-servers can serve theemerging Edge computing ecosystem, namely the provisioningof advanced computational, storage, and networking capabilitynear data sources to achieve both low latency event processingand high throughput analytical processing, before consideringoff-loading some of this processing to high-capacity datacentres.NanoStreams explores a scale-out micro-server architecture thatcan achieve equivalent QoS to that of conventional rack-mountedservers for high-capacity datacentres, but with dramaticallyreduced form factors and power consumption. To this end,NanoStreams introduces novel solutions in programmable & con-figurable hardware accelerators, as well as the system softwarestack used to access, share, and program those accelerators.Our NanoStreams micro-server prototype has demonstrated 5.5×higher energy-efficiency than a standard Xeon Server. Simulationsof the microserver’s memory system extended to leveragehybrid DDR/NVM main memory indicated 5× higher energyefficiencythan a conventional DDR-based system.
Resumo:
O desenvolvimento de sistemas computacionais é um processo complexo, com múltiplas etapas, que requer uma análise profunda do problema, levando em consideração as limitações e os requisitos aplicáveis. Tal tarefa envolve a exploração de técnicas alternativas e de algoritmos computacionais para optimizar o sistema e satisfazer os requisitos estabelecidos. Neste contexto, uma das mais importantes etapas é a análise e implementação de algoritmos computacionais. Enormes avanços tecnológicos no âmbito das FPGAs (Field-Programmable Gate Arrays) tornaram possível o desenvolvimento de sistemas de engenharia extremamente complexos. Contudo, o número de transístores disponíveis por chip está a crescer mais rapidamente do que a capacidade que temos para desenvolver sistemas que tirem proveito desse crescimento. Esta limitação já bem conhecida, antes de se revelar com FPGAs, já se verificava com ASICs (Application-Specific Integrated Circuits) e tem vindo a aumentar continuamente. O desenvolvimento de sistemas com base em FPGAs de alta capacidade envolve uma grande variedade de ferramentas, incluindo métodos para a implementação eficiente de algoritmos computacionais. Esta tese pretende proporcionar uma contribuição nesta área, tirando partido da reutilização, do aumento do nível de abstracção e de especificações algorítmicas mais automatizadas e claras. Mais especificamente, é apresentado um estudo que foi levado a cabo no sentido de obter critérios relativos à implementação em hardware de algoritmos recursivos versus iterativos. Depois de serem apresentadas algumas das estratégias para implementar recursividade em hardware mais significativas, descreve-se, em pormenor, um conjunto de algoritmos para resolver problemas de pesquisa combinatória (considerados enquanto exemplos de aplicação). Versões recursivas e iterativas destes algoritmos foram implementados e testados em FPGA. Com base nos resultados obtidos, é feita uma cuidada análise comparativa. Novas ferramentas e técnicas de investigação que foram desenvolvidas no âmbito desta tese são também discutidas e demonstradas.
Resumo:
Esta tese apresenta um estudo exploratório sobre sistemas de comunicação por luz visível e as suas aplicações em sistemas de transporte inteligentes como forma a melhorar a segurança nas estradas. Foram desenvolvidos neste trabalho, modelos conceptuais e analíticos adequados à caracterização deste tipo de sistemas. Foi desenvolvido um protótipo de baixo custo, capaz de suportar a disseminação de informação utilizando semáforos. A sua realização carece de um estudo detalhado, nomeadamente: i) foi necessário obter modelos capazes de descrever os padrões de radiação numa área de serviço pré-definida; ii) foi necessário caracterizar o meio de comunicações; iii) foi necessário estudar o comportamento de vários esquemas de modulação de forma a optar pelo mais robusto; finalmente, iv) obter a implementação do sistema baseado em FPGA e componentes discretos. O protótipo implementado foi testado em condições reais. Os resultados alcançados mostram os méritos desta solução, chegando mesmo a encorajar a utilização desta tecnologia em outros cenários de aplicação.
Resumo:
In the modern society, new devices, applications and technologies, with sophisticated capabilities, are converging in the same network infrastructure. Users are also increasingly demanding in personal preferences and expectations, desiring Internet connectivity anytime and everywhere. These aspects have triggered many research efforts, since the current Internet is reaching a breaking point trying to provide enough flexibility for users and profits for operators, while dealing with the complex requirements raised by the recent evolution. Fully aligned with the future Internet research, many solutions have been proposed to enhance the current Internet-based architectures and protocols, in order to become context-aware, that is, to be dynamically adapted to the change of the information characterizing any network entity. In this sense, the presented Thesis proposes a new architecture that allows to create several networks with different characteristics according to their context, on the top of a single Wireless Mesh Network (WMN), which infrastructure and protocols are very flexible and self-adaptable. More specifically, this Thesis models the context of users, which can span from their security, cost and mobility preferences, devices’ capabilities or services’ quality requirements, in order to turn a WMN into a set of logical networks. Each logical network is configured to meet a set of user context needs (for instance, support of high mobility and low security). To implement this user-centric architecture, this Thesis uses the network virtualization, which has often been advocated as a mean to deploy independent network architectures and services towards the future Internet, while allowing a dynamic resource management. This way, network virtualization can allow a flexible and programmable configuration of a WMN, in order to be shared by multiple logical networks (or virtual networks - VNs). Moreover, the high level of isolation introduced by network virtualization can be used to differentiate the protocols and mechanisms of each context-aware VN. This architecture raises several challenges to control and manage the VNs on-demand, in response to user and WMN dynamics. In this context, we target the mechanisms to: (i) discover and select the VN to assign to an user; (ii) create, adapt and remove the VN topologies and routes. We also explore how the rate of variation of the user context requirements can be considered to improve the performance and reduce the complexity of the VN control and management. Finally, due to the scalability limitations of centralized control solutions, we propose a mechanism to distribute the control functionalities along the architectural entities, which can cooperate to control and manage the VNs in a distributed way.
Resumo:
Sound localization can be defined as the ability to identify the position of an input sound source and is considered a powerful aspect of mammalian perception. For low frequency sounds, i.e., in the range 270 Hz-1.5 KHz, the mammalian auditory pathway achieves this by extracting the Interaural Time Difference between sound signals being received by the left and right ear. This processing is performed in a region of the brain known as the Medial Superior Olive (MSO). This paper presents a Spiking Neural Network (SNN) based model of the MSO. The network model is trained using the Spike Timing Dependent Plasticity learning rule using experimentally observed Head Related Transfer Function data in an adult domestic cat. The results presented demonstrate how the proposed SNN model is able to perform sound localization with an accuracy of 91.82% when an error tolerance of +/-10 degrees is used. For angular resolutions down to 2.5 degrees , it will be demonstrated how software based simulations of the model incur significant computation times. The paper thus also addresses preliminary implementation on a Field Programmable Gate Array based hardware platform to accelerate system performance.