945 resultados para Prioritized fuzzy constraint satisfaction
Resumo:
The decision-making process for machine-tool selection and operation allocation in a flexible manufacturing system (FMS) usually involves multiple conflicting objectives. Thus, a fuzzy goal-programming model can be effectively applied to this decision problem. The paper addresses application of a fuzzy goal-programming concept to model the problem of machine-tool selection and operation allocation with explicit considerations given to objectives of minimizing the total cost of machining operation, material handling and set-up. The constraints pertaining to the capacity of machines, tool magazine and tool life are included in the model. A genetic algorithm (GA)-based approach is adopted to optimize this fuzzy goal-programming model. An illustrative example is provided and some results of computational experiments are reported.
Resumo:
This paper presents a prototype of a fuzzy system for alleviation of network overloads in the day-to-day operation of power systems. The control used for overload alleviation is real power generation rescheduling. Generation Shift Sensitivity Factors (GSSF) are computed accurately, using a more realistic operational load flow model. Overloading of lines and sensitivity of controlling variables are translated into fuzzy set notations to formulate the relation between overloading of line and controlling ability of generation scheduling. A fuzzy rule based system is formed to select the controllers, their movement direction and step size. Overall sensitivity of line loading to each of the generation is also considered in selecting the controller. Results obtained for network overload alleviation of two modified Indian power networks of 24 bus and 82 bus with line outage contingencies are presented for illustration purposes.
Resumo:
In this work, the effect of lattice orientation on the fields prevailing near a notch tip is investigated pertaining to various constraint levels in FCC single crystals. A modified boundary layer formulation is employed and numerical solutions under mode I, plane strain conditions are generated by assuming an elastic-perfectly plastic FCC single crystal. The analysis is carried out corresponding to different lattice orientations with respect to the notch line. It is found that the near-tip deformation field, especially the development of kink or slip shear bands is sensitive to the constraint level. The stress distribution and the size and shape of the plastic zone near the notch tip are also strongly influenced by the level of T-stress. The present results clearly establish that ductile single crystal fracture geometries would progressively lose crack tip constraint as the T-stress becomes more negative irrespective of lattice orientation. Also, the near-tip field for a range of constraint levels can be characterized by two-parameters such as K-T or J-Q as in isotropic plastic solids.
Resumo:
Delineation of homogeneous precipitation regions (regionalization) is necessary for investigating frequency and spatial distribution of meteorological droughts. The conventional methods of regionalization use statistics of precipitation as attributes to establish homogeneous regions. Therefore they cannot be used to form regions in ungauged areas, and they may not be useful to form meaningful regions in areas having sparse rain gauge density. Further, validation of the regions for homogeneity in precipitation is not possible, since the use of the precipitation statistics to form regions and subsequently to test the regional homogeneity is not appropriate. To alleviate this problem, an approach based on fuzzy cluster analysis is presented. It allows delineation of homogeneous precipitation regions in data sparse areas using large scale atmospheric variables (LSAV), which influence precipitation in the study area, as attributes. The LSAV, location parameters (latitude, longitude and altitude) and seasonality of precipitation are suggested as features for regionalization. The approach allows independent validation of the identified regions for homogeneity using statistics computed from the observed precipitation. Further it has the ability to form regions even in ungauged areas, owing to the use of attributes that can be reliably estimated even when no at-site precipitation data are available. The approach was applied to delineate homogeneous annual rainfall regions in India, and its effectiveness is illustrated by comparing the results with those obtained using rainfall statistics, regionalization based on hard cluster analysis, and meteorological sub-divisions in India. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Building flexible constraint length Viterbi decoders requires us to be able to realize de Bruijn networks of various sizes on the physically provided interconnection network. This paper considers the case when the physical network is itself a de Bruijn network and presents a scalable technique for realizing any n-node de Bruijn network on an N-node de Bruijn network, where n < N. The technique ensures that the length of the longest path realized on the network is minimized and that each physical connection is utilized to send only one data item, both of which are desirable in order to reduce the hardware complexity of the network and to obtain the best possible performance.
Resumo:
A new technique named as model predictive spread acceleration guidance (MPSAG) is proposed in this paper. It combines nonlinear model predictive control and spread acceleration guidance philosophies. This technique is then used to design a nonlinear suboptimal guidance law for a constant speed missile against stationary target with impact angle constraint. MPSAG technique can be applied to a class of nonlinear problems, which leads to a closed form solution of the lateral acceleration (latax) history update. Guidance command assumed is the lateral acceleration (latax), applied normal to the velocity vector. The new guidance law is validated by considering the nonlinear kinematics with both lag-free as well as first order autopilot delay. The simulation results show that the proposed technique is quite promising to come up with a nonlinear guidance law that leads to both very small miss distance as well as the desired impact angle.
Resumo:
A new technique named as model predictive spread acceleration guidance (MPSAG) is proposed in this paper. It combines nonlinear model predictive control and spread acceleration guidance philosophies. This technique is then used to design a nonlinear suboptimal guidance law for a constant speed missile against stationary target with impact angle constraint. MPSAG technique can be applied to a class of nonlinear problems, which leads to a closed form solution of the lateral acceleration (latax) history update. Guidance command assumed is the lateral acceleration (latax), applied normal to the velocity vector. The new guidance law is validated by considering the nonlinear kinematics with both lag-free as well as first order autopilot delay. The simulation results show that the proposed technique is quite promising to come up with a nonlinear guidance law that leads to both very small miss distance as well as the desired impact angle.
Resumo:
Advertisements(Ads) are the main revenue earner for Television (TV) broadcasters. As TV reaches a large audience, it acts as the best media for advertisements of products and services. With the emergence of digital TV, it is important for the broadcasters to provide an intelligent service according to the various dimensions like program features, ad features, viewers’ interest and sponsors’ preference. We present an automatic ad recommendation algorithm that selects a set of ads by considering these dimensions and semantically match them with programs. Features of the ad video are captured interms of annotations and they are grouped into number of predefined semantic categories by using a categorization technique. Fuzzy categorical data clustering technique is applied on categorized data for selecting better suited ads for a particular program. Since the same ad can be recommended for more than one program depending upon multiple parameters, fuzzy clustering acts as the best suited method for ad recommendation. The relative fuzzy score called “degree of membership” calculated for each ad indicates the membership of a particular ad to different program clusters. Subjective evaluation of the algorithm is done by 10 different people and rated with a high success score.
Nonlinear Suboptimal Guidance with Impact Angle Constraint for Slow Moving Targets in 1-D Using MPSP
Resumo:
Using a recently developed method named as model predictive static programming (MPSP), a nonlinear suboptimal guidance law for a constant speed missile against a slow moving target with impact angle constraint is proposed. In this paper MPSP technique leads to a closed form solution of the latax history update for the given problem. Guidance command is the latax,which is normal to the missile velocity and the terminal constraints are miss distance and impact angle. The new guidance law is validated by considering the nonlinear kinematics with both lag-free and first order autopilot delay.