992 resultados para Primate Cerebral-cortex
Resumo:
Extreme prematurity and pregnancy conditions leading to intrauterine growth restriction (IUGR) affect thousands of newborns every year and increase their risk for poor higher order cognitive and social skills at school age. However, little is known about the brain structural basis of these disabilities. To compare the structural integrity of neural circuits between prematurely born controls and children born extreme preterm (EP) or with IUGR at school age, long-ranging and short-ranging connections were noninvasively mapped across cortical hemispheres by connection matrices derived from diffusion tensor tractography. Brain connectivity was modeled along fiber bundles connecting 83 brain regions by a weighted characterization of structural connectivity (SC). EP and IUGR subjects, when compared with controls, had decreased fractional anisotropy-weighted SC (FAw-SC) of cortico-basal ganglia-thalamo-cortical loop connections while cortico-cortical association connections showed both decreased and increased FAw-SC. FAw-SC strength of these connections was associated with poorer socio-cognitive performance in both EP and IUGR children.
Resumo:
STUDY OBJECTIVES: That sleep deprivation increases the brain expression of various clock genes has been well documented. Based on these and other findings we hypothesized that clock genes not only underlie circadian rhythm generation but are also implicated in sleep homeostasis. However, long time lags have been reported between the changes in the clock gene messenger RNA levels and their encoded proteins. It is therefore crucial to establish whether also protein levels increase within the time frame known to activate a homeostatic sleep response. We report on the central and peripheral effects of sleep deprivation on PERIOD-2 (PER2) protein both in intact and suprachiasmatic nuclei-lesioned mice. DESIGN: In vivo and in situ PER2 imaging during baseline, sleep deprivation, and recovery. SETTINGS: Mouse sleep-recording facility. PARTICIPANTS: Per2::Luciferase knock-in mice. INTERVENTIONS: N/A. MEASUREMENTS AND RESULTS: Six-hour sleep deprivation increased PER2 not only in the brain but also in liver and kidney. Remarkably, the effects in the liver outlasted those observed in the brain. Within the brain the increase in PER2 concerned the cerebral cortex mainly, while leaving suprachiasmatic nuclei (SCN) levels unaffected. Against expectation, sleep deprivation did not increase PER2 in the brain of arrhythmic SCN-lesioned mice because of higher PER2 levels in baseline. In contrast, liver PER2 levels did increase in these mice similar to the sham and partially lesioned controls. CONCLUSIONS: Our results stress the importance of considering both sleep-wake dependent and circadian processes when quantifying clock-gene levels. Because sleep deprivation alters PERIOD-2 in the brain as well as in the periphery, it is tempting to speculate that clock genes constitute a common pathway mediating the shared and well-known adverse effects of both chronic sleep loss and disrupted circadian rhythmicity on metabolic health.
Resumo:
Rationale Methylone, a new drug of abuse sold as"bath salts' has similar effects to ecstasy or cocaine. Objective We have investigated changes in dopaminergic and serotoninergic markers, indicative of neuronal damage, induced by methylone in the frontal cortex, hippocampus and striatum of mice and according two different treatment schedules. Methods Methylone was given subcutaneously to male Swiss CD1 mice and at an ambient temperature of 26ºC. Treatment A: three doses of 25 mg/Kg at 3.5 h interval between doses for two consecutive days. Treatment B: four doses of 25 mg/Kg at 3 h interval in one day. Results Repeated methylone administration induced hyperthermia and a significant loss in body weight. Following treatment A, methylone induced transient dopaminergic (frontal cortex) and serotoninergic (hippocampus) impairment. Following treatment B, transient dopaminergic (frontal cortex) and serotonergic (frontal cortex and hippocampus) changes 7 days after treatment were found. We found evidence of astrogliosis in the CA1 and the dentate gyrus of the hippocampus following treatment B. The animals also showed an increase in immobility time in the forced swim test, pointing to a depressive-like behavior. In cultured cortical neurons, methylone (for 24 and 48 h) did not induce a remarkable cytotoxic effect. Conclusions The neural effects of methylone differ depending upon the treatment schedule. Neurochemical changes elicited by methylone are apparent when administered at an elevated ambient temperature, four times per day at 3 h intervals, which is in accordance with its short half-life.
Resumo:
The ability to recognize a shape is linked to figure-ground (FG) organization. Cell preferences appear to be correlated across contrast-polarity reversals and mirror reversals of polygon displays, but not so much across FG reversals. Here we present a network structure which explains both shape-coding by simulated IT cells and suppression of responses to FG reversed stimuli. In our model FG segregation is achieved before shape discrimination, which is itself evidenced by the difference in spiking onsets of a pair of output cells. The studied example also includes feature extraction and illustrates a classification of binary images depending on the dominance of vertical or horizontal borders.
Resumo:
Interactions of neurons with microglia may play a dominant role in sleep regulation. TNF may exert its somnogeneic effects by promoting attraction of microglia and their processes to the vicinity of dendrites and synapses. We found TNF to stimulate neurons (i) to produce CCL2, CCL7 and CXCL10, chemokines acting on mononuclear phagocytes and (ii) to stimulate the expression of the macrophage colony stimulating factor (M-CSF/Csf1), which leads to elongation of microglia processes. TNF may also act on neurons by affecting the expression of genes essential in sleep-wake behavior. The neuronal expression of Homer1a mRNA, increases during spontaneous and enforced periods of wakefulness. Mice with a deletion of Homer1a show a reduced wakefulness with increased non-rapid eye movement (NREM) sleep during the dark period. Recently the TNF-dependent increase of NREM sleep in the dark period of mice with CD40-induced immune activation was found to be associated with decreased expression of Homer1a. In the present study we investigated the effects of TNF and IL-1β on gene expression in cultures of the neuronal cell line HT22 and cortical neurons. TNF slightly increased the expression of Homer1a and IL-1β profoundly enhanced the expression of Early growth response 2 (Egr2). The data presented here indicate that the decreased expression of Homer1a, which was found in the dark period of mice with CD40-induced increase of NREM sleep is not due to inhibitory effects of TNF and IL-1β on the expression of Homer1a in neurons.
Resumo:
The autophagic process is a lysosomal degradation pathway, which is activated during stress conditions, such as starvation or exercise. Regular exercise has beneficial effects on human health, including neuroprotection. However, the cellular mechanisms underlying these effects are incompletely understood. Endurance and a single bout of exercise induce autophagy not only in brain but also in peripheral tissues. However, little is known whether autophagy could be modulated in brain and peripheral tissues by long-term moderate exercise. Here, we examined the effects on macroautophagy process of long-term moderate treadmill training (36 weeks) in adult rats both in brain (hippocampus and cerebral cortex) and peripheral tissues (skeletal muscle, liver and heart). We assessed mTOR activation and the autophagic proteins Beclin 1, p62, LC3B (LC3B-II/LC3B-I ratio) and the lysosomal protein LAMP1, as well as the ubiquitinated proteins. Our results showed in the cortex of exercised rats an inactivation of mTOR, greater autophagy flux (increased LC3-II/LC3-I ratio and reduced p62) besides increased LAMP1. Related with these effects a reduction in the ubiquitinated proteins was observed. No significant changes in the autophagic pathway were found either in hippocampus or in skeletal and cardiac muscle by exercise. Only in the liver of exercised rats mTOR phosphorylation and p62 levels increased, which could be related with beneficial metabolic effects in this organ induced by exercise. Thus, our findings suggest that long-term moderate exercise induces autophagy specifically in the cortex
Resumo:
The autophagic process is a lysosomal degradation pathway, which is activated during stress conditions, such as starvation or exercise. Regular exercise has beneficial effects on human health, including neuroprotection. However, the cellular mechanisms underlying these effects are incompletely understood. Endurance and a single bout of exercise induce autophagy not only in brain but also in peripheral tissues. However, little is known whether autophagy could be modulated in brain and peripheral tissues by long-term moderate exercise. Here, we examined the effects on macroautophagy process of long-term moderate treadmill training (36 weeks) in adult rats both in brain (hippocampus and cerebral cortex) and peripheral tissues (skeletal muscle, liver and heart). We assessed mTOR activation and the autophagic proteins Beclin 1, p62, LC3B (LC3B-II/LC3B-I ratio) and the lysosomal protein LAMP1, as well as the ubiquitinated proteins. Our results showed in the cortex of exercised rats an inactivation of mTOR, greater autophagy flux (increased LC3-II/LC3-I ratio and reduced p62) besides increased LAMP1. Related with these effects a reduction in the ubiquitinated proteins was observed. No significant changes in the autophagic pathway were found either in hippocampus or in skeletal and cardiac muscle by exercise. Only in the liver of exercised rats mTOR phosphorylation and p62 levels increased, which could be related with beneficial metabolic effects in this organ induced by exercise. Thus, our findings suggest that long-term moderate exercise induces autophagy specifically in the cortex
Resumo:
Noradrenergic neurotransmission has been associated with the modulation of higher cognitive functions mediated by the prefrontal cortex. In the present study, the impact of noradrenergic stimulation on the human action-monitoring system, as indexed by eventrelated brain potentials, was examined. After the administration of a placebo or the selective 2 -adrenoceptor antagonist yohimbine, which stimulates firing in the locus ceruleus and noradrenaline release, electroencephalograpic recordings were obtained from healthy volunteers performing a letter flanker task. Yohimbine led to an increase in the amplitude of the error-related negativity in conjunction with a significant reduction of action errors. Reaction times were unchanged, and the drug did not modify the N2 in congruent versus incongruent trials, a measure of preresponse conflict, or posterror adjustments as measured by posterror slowing of reaction time. The present findings suggest that the locus ceruleusnoradrenaline system exerts a rather specific effect on human action monitoring.
Resumo:
An increase in cognitive control has been systematically observed in responses produced immediately after the commission of an error. Such responses show a delay in reaction time (post-error slowing) and an increase in accuracy. To characterize the neurophysiological mechanism involved in the adaptation of cognitive control, we examined oscillatory electrical brain activity by electroencephalogram and its corresponding neural network by event-related functional magnetic resonance imaging in three experiments. We identified a new oscillatory thetabeta component related to the degree of post-error slowing in the correct responses following an erroneous trial. Additionally, we found that the activity of the right dorsolateral prefrontal cortex, the right inferior frontal cortex, and the right superior frontal cortex was correlated with the degree of caution shown in the trial following the commission of an error. Given the overlap between this brain network and the regions activated by the need to inhibit motor responses in a stop-signal manipulation, we conclude that the increase in cognitive control observed after the commission of an error is implemented through the participation of an inhibitory mechanism.
Resumo:
It has been suggested that decisionmaking depends on sensitive feelings associatedwith cognitive processing rather than cognitiveprocessing alone. From human lesions, we knowthe medial anterior inferior-ventral prefrontalcortex processes the sensitivity associated withcognitive processing, it being essentiallyresponsible for decision making.In this fMRI (functional Magnetic ResonanceImage) study 15 subjects were analyzed usingmoral dilemmas as probes to investigate the neuralbasis for painful-emotional sensitivity associatedwith decision making. We found that a networkcomprising the posterior and anterior cingulateand the medial anterior prefrontal cortex wassignificantly and specifically activated by painfulmoral dilemmas, but not by non-painful dilemmas.These findings provide new evidence that thecingulate and medial anterior prefrontal areinvolved in processing painful emotionalsensibility, in particular, when decision makingtakes place. We speculate that decision makinghas a cognitive component processed by cognitivebrain areas and a sensitivity component processedby emotional brain areas. The structures activatedsuggest that decision making depends on painfulemotional feeling processing rather than cognitiveprocessing when painful feeling processinghappens
Resumo:
In the state Mato Grosso do Sul, Brazil, outbreaks of meningoencephalitis by BoHV-5 and polioencephalomalacia (PEM) display similar epidemiological features, suggesting that meningoencephalitis may be associated with reactivation of a latent BoHV-5 infection, during the development of PEM. To test this hypothesis, four 7-8 months old steers negative for BoHV-5 antibodies were inoculated intranasally with BoHV-5 and received amprolium from day 35 to day 105 after inoculation. Because PEM was not produced during this period, ammonium sulphate was given from day 114 to day 180 after inoculation. Two uninfected control steers received amprolium and ammonium sulphate for the same periods. All inoculated cattle developed antibodies against BoHV-5 after inoculation and the virus was isolated from nasal swabs, indicating that they were infected. Two inoculated steers had clinical signs of PEM after 118 and 146 days after virus inoculation. One was euthanized after a clinical manifestation period of seven days and had severe lesions of PEM and meningoencephalitis. BoHV-5 was isolated from the central nervous system of this animal. The other animal recovered but continued to manifest chronic signs of PEM and was euthanatized. On histological examination, the cerebral cortex, caudate nucleus and thalamus had multifocal areas of malacia and mild meningoencephalitis of the cortex. BoHV-5 was not isolated from the brain. One uninfected control steer had signs of neurological disease on day 158 and had lesions of PEM without meningoencephalitis at necropsy. The simultaneous production of PEM and diffuse meningoencephalitis, with isolation of BoHV-5, in one steer treated with ammonium sulphate, 118 days after BoHV-5 inoculation, suggests that latent BoHV-5 was reactivated in this animal submitted to experimental induction of PEM.
Resumo:
The present study describes the occurrence of lead poisoning in cattle and chickens in Pará, Brazil. In a lot composed of 80 calves from a dairy herd, 10 animals became sick and nine died, but one animal recovered after being removed from the paddock. Upon inspection of this paddock, the presence of truck batteries used to store energy captured by solar panels was found. The clinical signs observed in calves included difficult breathing, nasal discharge, excessive salivation, corneal opacity, pushing of the head against objects and recumbency. The chickens had decreased oviposition and produced eggs with thin or malformed shells. The necropsy findings of the cattle, as well as the histopathological changes observed, were of little significance except for one animal that showed mild astrocytosis histopathology in the cerebral cortex. In one of the chickens, renal histopathology showed mild multifocal acute tubular necrosis. The mean lead concentrations in the livers and kidneys of the cattle were 93.91mg/kg and 209.76mg/kg, respectively, and the mean concentration detected in chicken livers was 105.02mg/kg. It was concluded that the source of lead poisoning in these calves and chickens were the truck battery plates, which were within reach of the animals.
Resumo:
Thrombotic meningoencephalitis (TME) is a fatal neurological disease of cattle, predominantly from North America, that is caused by Histophilus somniwith sporadic descriptions from other countries. This manuscript describes the occurrence of spontaneous TME in cattle from northern Paraná, Brazil. Most cattle had acute neurological manifestations characteristic of brain dysfunction. Hematological and cerebrospinal fluid analyses were not suggestive of bacterial infections of the brain. Histopathology revealed meningoencephalitis with vasculitis and thrombosis of small vessels that contained discrete neutrophilic and/or lymphocytic infiltrates admixed with fibrin at the brainstem, cerebral cortex, and trigeminal nerve ganglion of all animals. All tissues from the central nervous system used during this study were previously characterized as negative for rabies virus by the direct immunofluorescence assay. PCR and RT-PCR assays investigated the participation of infectious agents associated with bovine neurological disease by targeting specific genes of H. somni, Listeria monocytogenes, bovine herpesvirus -1 and -5, bovine viral diarrhea virus, and ovine herpesvirus-2. PCR and subsequent sequencing resulted in partial fragments of the 16S rRNA gene of H. somni from brain sections of all animals with histopathological diagnosis of TME; all other PCR/RT-PCR assays were negative. These findings confirmed the participation of H. somni in the neuropathological disease observed in these animals, extend the geographical distribution of this disease, and support previous findings of H. somni from Brazil.
Resumo:
Lactating rat dams were submitted to short episodes (1, 2 or 3 weeks) of nutritional restriction by receiving the "regional basic diet" (RBD, with 8% protein) of low-income human populations of Northeast Brazil. Their pups were then studied regarding the developmental effects on body and brain weights. When the rats reached adulthood, cortical susceptibility to the phenomenon of spreading depression (SD) was evaluated by performing electrophysiological recordings on the surface of the cerebral cortex. SD was elicited at 20-min intervals by applying 2% KCl for 1 min to a site on the frontal cortex and its occurrence was monitored at 2 sites in the parietal region by recording the electrocorticogram and the slow potential change of SD. When compared to control rats fed a commercial diet with 23% protein, early malnourished rats showed deficits in body and brain weights (10% to 60% and 3% to 15%, respectively), as well as increases in velocity of SD propagation (10% to 20%). These effects were directly related to the duration of maternal dietary restriction, with pups malnourished for 2 or 3 weeks presenting more intense weight and SD changes than those malnourished for 1 week. The effects of 1-week restrictions on SD were less evident in the pups malnourished during the second week of lactation and were more evident in pups receiving the RBD during the third week. The results indicate that short episodes of early malnutrition during the suckling period can affect body and brain development, as well as the cortical susceptibility to SD during adulthood. The data also suggest that the third week of lactation is the period during which the brain is most sensitive to malnutrition, concerning the effects on SD
Resumo:
Cholinergic as well as monoaminergic neurotransmission seems to be involved in the etiology of affective disorders. Chronic treatment with imipramine, a classical antidepressant drug, induces adaptive changes in monoaminergic neurotransmission. In order to identify possible changes in cholinergic neurotransmission we measured total, membrane-bound and soluble acetylcholinesterase (Achase) activity in several rat brain regions after chronic imipramine treatment. Changes in Achase activity would indicate alterations in acetylcholine (Ach) availability to bind to its receptors in the synaptic cleft. Male rats were treated with imipramine (20 mg/kg, ip) for 21 days, once a day. Twenty-four hours after the last dose the rats were sacrificed and homogenates from several brain regions were prepared. Membrane-bound Achase activity (nmol thiocholine formed min-1 mg protein-1) after chronic imipramine treatment was significantly decreased in the hippocampus (control = 188.8 ± 19.4, imipramine = 154.4 ± 7.5, P<0.005) and striatum (control = 850.9 ± 59.6, imipramine = 742.5 ± 34.7, P<0.005). A small increase in total Achase activity was observed in the medulla oblongata and pons. No changes in enzyme activity were detected in the thalamus or total cerebral cortex. Since the levels of Achase seem to be enhanced through the interaction between Ach and its receptors, a decrease in Achase activity may indicate decreased Ach release by the nerve endings. Therefore, our data indicate that cholinergic neurotransmission is decreased after chronic imipramine treatment which is consistent with the idea of an interaction between monoaminergic and cholinergic neurotransmission in the antidepressant effect of imipramine