361 resultados para Premixed


Relevância:

10.00% 10.00%

Publicador:

Resumo:

perimentally at evaluated pressures and under normal- and micro-gravity conditions utilizing the 3.5 s drop tower of the National Microgravity Laboratory of China. The results showed that under micro-gravity conditions the natural convection is minimized and the flames become more planar and symmetric compared to normal gravity. In both normal- and micro-gravity experiments and for a given strain rate and fuel concentration, the flame luminosity was found to enhance as the pressure increases. On the other hand, at a given pressure, the flame luminosity was determined to weaken as the strain rate decreases. At a given strain rate, the fuel concentration at extinction was found to vary non-monotonically with pressure, namely it first increases and subsequently decreases with pressure. The limit fuel concentration peaks around 3 and 4 atm under normal- and micro-gravity, respectively. The extinction limits measured at micro-gravity were in good agreement with predictions obtained through detailed numerical simulations but they are notably lower compared to the data obtained under normal gravity. The simulations confirmed the non-monotonic variation of flammability limits with pressure, in agreement with previous studies. Sensitivity analysis showed that for pressures between one and 5 atm, the near-limit flame response is dominated by the competition between the main branching, H + O2 ? OH + O, and the pressure sensitive termination, H+O2+M? HO2 + M, reaction. However, for pressures greater than 5 atm it was determined that the HO2 kinetics result in further chain branching in a way that is analogous to the third explosion limit of H2/O2 mixtures. 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

利用微重力条件下向外传播的球形火焰,对贫燃极限附近甲烷/空气预混火焰的层流燃烧速度进行了测量,得到当量比从0.512(本文微重力实验中测定的可燃极限)到0.601范围内的零拉伸层流燃烧速度,并与前人实验数据和使用3种化学反应动力学模型的计算结果进行了比较. 本文实验结果与已有的微重力实验数据非常接近,而其他研究者在常重力实验中得到的数据大多都明显高于微重力实验结果. 不同化学反应机理预测的燃烧速度比微重力实验测量值大得多,这是因为它们主要是用远离可燃极限的燃烧速度校核的

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文成功搭建了适用于中国科学院力学研究所国家微重力实验室(NMLC)落塔的高压对冲火焰实验系统, 并首次开展了微重力条件下加压对冲火焰实验, 测定了一定张力条件下甲烷/空气层流预混火焰的熄灭极限. 实验结果表明, 随着压力的增高, 甲烷/空气混合气体的可燃极限呈先增后降的非单调变化趋势, 峰值发生在0.4 MPa左右. 浮力对加压下微弱火焰熄灭极限的影响明显, 在常重力条件下, 相同张力下的熄灭极限较微重力条件下的偏大, 峰值出现的压力略低. 微重力条件下的实验结果与使用CHEMKIN的数值模拟的结果相当一致.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the major challenges faced nowadays by oil companies is the exploration of pre-salt basins. Thick salt layers were formed in remote ages as a consequence of the evaporation of sea water containing high concentrations of NaCl and KCl. Deep reservoirs can be found below salt formations that prevent the outflow of oil, thus improving the success in oil prospection. The slurries used in the cement operations of salt layers must be adequate to the properties of those specific formations. At the same time, their resulting properties are highly affected by the contamination of salt in the fresh state. It is t herefore important to address the effects of the presence of salt in the cement slurries in order to assure that the well sheath is able to fulfill its main role to provide zonal isolation and mechanical stability. In this scenario, the objective of the present thesis work was to evaluate the effect of the presence of NaCl and KCl premixed with cement and 40% silica flour on the behavior of cement slurries. Their effect in the presence of CO2 was also investigated. The rheological behavior of slurries containing NaCl and KCl was evaluated along with their mechanical strength. Thermal and microstructural tests were also carried out. The results revealed that the presence of NaCl and KCl affected the pozzolanic activity of silica flour, reducing the strength of the hardened slurries containing salt. Friedel´s salt was formed as a result of the bonding between free Cl- and tricalcium aluminate. The presence of CO2 also contributed to the degradation of the slurries as a result of a process of carbonation/bicarbonataion

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE:To assess whether late introduction of a specific COX-2 inhibitor (Meloxicam) can treat and/or prevent the progression of tumors in the stomach of rats submitted to duodenogastric reflux. METHODS: Seventy five male Wistar rats, weighing 150 grams, were submitted to the induction of duodenogastric reflux through the pylorus. At 36 weeks of follow-up were established three experimental groups: DGR36 sacrificed immediately, DGR54 and DGR54MLX both sacrificed at 54th week of follow-up . The animals of the latter group were fed with a rat chow premixed with Meloxicam (2.0 mg/ kg feed; 0.3 mg / kg bw / day) and the other two with standard rat chow. The lesions found in the pyloric mucosa and gastrojejunal anastomosis were analyzed macroscopically and histologically. For statistical analysis was adjusted a generalized linear model assuming a binomial distribution with LOGIT link function. RESULTS: No significant differences were found when comparing the incidences of benign tumor lesions (Adenomatous Hyperplasia), p=0.4915, or malignant (Mucinous Adenocarcinoma), p=0.2731, among groups. CONCLUSION: Late introduction of specific COX-2 inhibitor (Meloxicam) did not treat and was not able to prevent the progression of tumoral lesions induced by duodenogastric reflux in the rat stomachs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the construction of an axisymmetric nonpremixed piloted jet burner, with well-defined initial and boundary conditions, known as the Delft burner, to assess turbulence-chemistry interaction in non-premixed turbulent flames. Detailed experimental information is described, involving hot-wire anemometry, thin-wire thermocouples and chemiluminescence visualization measurements. Radial profile of the axial mean velocity indicates excellent agreement between flow patterns developed within Delft installation and the one described herein. Chemiluminescence emissions from CH and C2 free-radicals were acquired with a CCD camera. Tomography reconstruction analysis was utilised to compare radical emissions and temperature spatial distributions. There was a strong dependence between temperature and CH/C 2 emissions. This is an indication that these radicals can be used in flame front studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental study has been conducted with the objective of investigating the effects of the flame structure in the combustion oscillation conditions into a laboratorial scale cylindrical chamber. The experiments were conducted in a water-jacketed 1-m long by 25-cm internal diameter stainless steel vertical tube. The combustor operated with liquefied petroleum gas (LPG) in both oscillatory and non oscillatory conditions, under the same input conditions. Part of the reactant mixture was excited acoustically, before the burner exit, by a speaker positioned strategically. The burner was aligned with the chamber longitudinal axis and positioned at its bottom. The experiments were conducted for 0.16 g/s of LPG burning in stoichiometric equivalence ratio. To analyze the flame structure the image tomographic reconstruction process were used, and the resultant images were associated to the oscillatory conditions (frequency and amplitude) into the combustion chamber. The main conclusions were: 1) when the flame premixed condition increase, for example 60% of the total air flow rate is premixed with LPG, the region of intense energy released is close to burner exit and strong amplitudes of oscillation (close to 50 mbar) were obtained into the chamber; 2) for long flames, predominantly diffusive flames, just weak amplitudes were detected, in the spite of the speaker exiting the premixed flow; 3) when the energy is released distributed through the combustion chamber, the long flame acts like a baffle. Copyright © 2006 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents numerical modeling of a turbulent natural gas flow through a non-premixed industrial burner of a slab reheating furnace. The furnace is equipped with diffusion side swirl burners capable of utilizing natural gas or coke oven gas alternatively through the same nozzles. The study is focused on one of the burners of the preheating zone. Computational Fluid Dynamics simulation has been used to predict the burner orifice turbulent flow. Flow rate and pressure at burner upstream were validated by experimental measurements. The outcomes of the numerical modeling are analyzed for the different turbulence models in terms of pressure drop, velocity profiles, and orifice discharge coefficient. The standard, RNG, and Realizable k-epsilon models and Reynolds Stress Model (RSM) have been used. The main purpose of the numerical investigation is to determine the turbulence model that more consistently reproduces the experimental results of the flow through an industrial non-premixed burner orifice. The comparisons between simulations indicate that all the models tested satisfactorily and represent the experimental conditions. However, the Realizable k-epsilon model seems to be the most appropriate turbulence model, since it provides results that are quite similar to the RSM and RNG k-epsilon models, requiring only slightly more computational power than the standard k-epsilon model. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brazil is expected to have 19.6 million patients with diabetes by the year 2030. A key concept in the treatment of type 2 diabetes mellitus (T2DM) is establishing individualized glycemic goals based on each patient’s clinical characteristics, which impact the choice of antihyperglycemic therapy. Targets for glycemic control, including fasting blood glucose, postprandial blood glucose, and glycated hemoglobin (A1C), are often not reached solely with antihyperglycemic therapy, and insulin therapy is often required. Basal insulin is considered an initial strategy; however, premixed insulins are convenient and are equally or more effective, especially for patients who require both basal and prandial control but desire a more simplified strategy involving fewer daily injections than a basal-bolus regimen. Most physicians are reluctant to transition patients to insulin treatment due to inappropriate assumptions and insufficient information. We conducted a nonsystematic review in PubMed and identified the most relevant and recently published articles that compared the use of premixed insulin versus basal insulin analogues used alone or in combination with rapid-acting insulin analogues before meals in patients with T2DM. These studies suggest that premixed insulin analogues are equally or more effective in reducing A1C compared to basal insulin analogues alone in spite of the small increase in the risk of nonsevere hypoglycemic events and nonclinically significant weight gain. Premixed insulin analogues can be used in insulin-naïve patients, in patients already on basal insulin therapy, and those using basal-bolus therapy who are noncompliant with blood glucose self-monitoring and titration of multiple insulin doses. We additionally provide practical aspects related to titration for the specific premixed insulin analogue formulations commercially available in Brazil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analisi delle emissioni di inquinanti per combustioni innovative Dual-Fuel e Premixed Charge Compression Ignition (PCCI) operate su un motore Diesel, nel laboratorio di propulsione e macchine della Scuola d'Ingegneria e Architettura con sede a Forlì. Tale studio è stato realizzato in quanto la riduzione delle emissioni e dei consumi sono caratteristiche di primo impatto per la competitività sul mercato di un motore e poiché le emissioni di inquinanti sono regolate da standard europei che ne esigono la continua riduzione. L'obiettivo della ricerca è quello di definire un pattern di combustioni, variando il valore e la sincronizzazione dei parametri delle attuazioni, che consenta la riduzione di inquinanti senza compromettere le prestazioni. Capire come ottenere minori emissioni di inquinanti significa poter far rientrare anche i motori diesel nelle future normative EURO 6 (già definite ed in vigore da Settembre 2014), e di seguire studi paralleli sulla riduzione dei consumi sui quali sono già stati riscontrati risultati positivi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For a fluid dynamics experimental flow measurement technique, particle image velocimetry (PIV) provides significant advantages over other measurement techniques in its field. In contrast to temperature and pressure based probe measurements or other laser diagnostic techniques including laser Doppler velocimetry (LDV) and phase Doppler particle analysis (PDPA), PIV is unique due to its whole field measurement capability, non-intrusive nature, and ability to collect a vast amount of experimental data in a short time frame providing both quantitative and qualitative insight. These properties make PIV a desirable measurement technique for studies encompassing a broad range of fluid dynamics applications. However, as an optical measurement technique, PIV also requires a substantial technical understanding and application experience to acquire consistent, reliable results. Both a technical understanding of particle image velocimetry and practical application experience are gained by applying a planar PIV system at Michigan Technological University’s Combustion Science Exploration Laboratory (CSEL) and Alternative Fuels Combustion Laboratory (AFCL). Here a PIV system was applied to non-reacting and reacting gaseous environments to make two component planar PIV as well as three component stereographic PIV flow field velocity measurements in conjunction with chemiluminescence imaging in the case of reacting flows. This thesis outlines near surface flow field characteristics in a tumble strip lined channel, three component velocity profiles of non-reacting and reacting swirled flow in a swirl stabilized lean condition premixed/prevaporized-fuel model gas turbine combustor operating on methane at 5-7 kW, and two component planar PIV measurements characterizing the AFCL’s 1.1 liter closed combustion chamber under dual fan driven turbulent mixing flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the advent of automobiles, alcohol has been considered a possible engine fuel1,2. With the recent increased concern about the high price of crude oil due to fluctuating supply and demand and environmental issues, interest in alcohol based fuels has increased2,3. However, using pure alcohols or blends with conventional fuels in high percentages requires changes to the engine and fuel system design2. This leads to the need for a simple and accurate conventional fuels-alcohol blends combustion models that can be used in developing parametric burn rate and knock combustion models for designing more efficient Spark Ignited (SI) engines. To contribute to this understanding, numerical simulations were performed to obtain detailed characteristics of Gasoline-Ethanol blends with respect to Laminar Flame Speed (LFS), autoignition and Flame-Wall interactions. The one-dimensional premixed flame code CHEMKIN® was applied to simulate the burning velocity and autoignition characteristics using the freely propagating model and closed homogeneous reactor model respectively. Computational Fluid Dynamics (CFD) was used to obtain detailed flow, temperature, and species fields for Flame-wall interactions. A semi-detailed validated chemical kinetic model for a gasoline surrogate fuel developed by Andrae and Head4 was used for the study of LFS and Autoignition. For the quenching study, a skeletal chemical kinetic mechanism of gasoline surrogate, having 50 species and 174 reactions was used. The surrogate fuel was defined as a mixture of pure n-heptane, isooctane, and toluene. For LFS study, the ethanol volume fraction was varied from 0 to 85%, initial pressure from 4 to 8 bar, initial temperature from 300 to 900K, and dilution from 0 to 32%. Whereas for Autoignition study, the ethanol volume fraction was varied between 0 to 85%, initial pressure was varied between 20 to 60 bar, initial temperature was varied between 800 to 1200K, and the dilution was varied between 0 to 32% at equivalence ratios of 0.5, 1.0 and 1.5 to represent the in-cylinder conditions of a SI engine. For quenching study three Ethanol blends, namely E0, E25 and E85 are described in detail at an initial pressure of 8 atm and 17 atm. Initial wall temperature was taken to be 400 K. Quenching thicknesses and heat fluxes to the wall were computed. The laminar flame speed was found to increase with ethanol concentration and temperature but decrease with pressure and dilution. The autoignition time was found to increase with ethanol concentration at lower temperatures but was found to decrease marginally at higher temperatures. The autoignition time was also found to decrease with pressure and equivalence ratio but increase with dilution. The average quenching thickness was found to decrease with an increase in Ethanol concentration in the blend. Heat flux to the wall increased with increase in ethanol percentage in the blend and at higher initial pressures. Whereas the wall heat flux decreased with an increase in dilution. Unburned Hydrocarbon (UHC) and CO % was also found to decrease with ethanol concentration in the blend.