379 resultados para Polypeptides
Resumo:
The protein encoded by the gamma 134.5 gene of herpes simplex virus precludes premature shutoff of protein synthesis in human cells triggered by stress associated with onset of viral DNA synthesis. The carboxyl terminus of the protein is essential for this function. This report indicates that the shutoff of protein synthesis is not due to mRNA degration because mRNA from wild-type or gamma 134.5- virus-infected cells directs protein synthesis. Analyses of the posttranslational modifications of translation initiation factor eIF-2 showed the following: (i) eIF-2 alpha was selectively phosphorylated by a kinase present in ribosome-enriched fraction of cells infected with gamma 134.5- virus. (ii) Endogenous eIF-2 alpha was totally phosphorylated in cells infected with gamma 134.5- virus or a virus lacking the 3' coding domain of the gamma 134.5 gene but was not phosphorylated in mock-infected or wild-type virus-infected cells. (iii) Immune precipitates of the PKR kinase that is responsible for regulation of protein synthesis of some cells by phosphorylation of eIF-2 alpha yielded several phosphorylated polypeptides. Of particular significance were two observations. First, phosphorylation of PKR kinase was elevated in all infected cells relative to the levels in mock-infected cells. Second, the precipitates from lysates of cells infected with gamma 134.5- virus or a virus lacking the 3' coding domain of the gamma 134.5 gene contained an additional labeled phosphoprotein of M(r) 90,000 (p90). This phosphoprotein was present in only trace amounts in the immunoprecipitate from cells infected with wild-type virus or mutants lacking a portion of the 5' domain of gamma 134.5. We conclude that in the absence of gamma 134.5 protein, PKR kinase complexes with the p90 phosphoprotein and shuts off protein synthesis by phosphorylation of the alpha subunit of translation initiation factor eIF-2.
Resumo:
Nramp (natural resistance-associated macrophage protein) is a newly identified family of integral membrane proteins whose biochemical function is unknown. We report on the identification of Nramp homologs from the fly Drosophila melanogaster, the plant Oryza sativa, and the yeast Saccharomyces cerevisiae. Optimal alignment of protein sequences required insertion of very few gaps and revealed remarkable sequence identity of 28% (yeast), 40% (plant), and 55% (fly) with the mammalian proteins (46%, 58%, and 73% similarity), as well as a common predicted transmembrane topology. This family is defined by a highly conserved hydrophobic core encoding 10 transmembrane segments. Other features of this hydrophobic core include several invariant charged residues, helical periodicity of sequence conservation suggesting conserved and nonconserved faces for several transmembrane helices, a consensus transport signature on the intracytoplasmic face of the membrane, and structural determinants previously described in ion channels. These characteristics suggest that the Nramp polypeptides form part of a group of transporters or channels that act on as yet unidentified substrates.
Resumo:
Signal peptides direct the cotranslational targeting of nascent polypeptides to the endoplasmic reticulum (ER). It is currently believed that the signal recognition particle (SRP) mediates this targeting by first binding to signal peptides and then by directing the ribosome/nascent chain/SRP complex to the SRP receptor at the ER. We show that ribosomes can mediate targeting by directly binding to translocation sites. When purified away from cytosolic factors, including SRP and nascent-polypeptide-associated complex (NAC), in vitro assembled translation intermediates representing ribosome/nascent-chain complexes efficiently bound to microsomal membranes, and their nascent polypeptides could subsequently be efficiently translocated. Because removal of cytosolic factors from the ribosome/nascent-chain complexes also resulted in mistargeting of signalless nascent polypeptides, we previously investigated whether readdition of cytosolic factors, such as NAC and SRP, could restore fidelity to targeting. Without SRP, NAC prevented all nascent-chain-containing ribosomes from binding to the ER membrane. Furthermore, SRP prevented NAC from blocking ribosome-membrane association only when the nascent polypeptide contained a signal. Thus, NAC is a global ribosome-binding prevention factor regulated in activity by signal-peptide-directed SRP binding. A model presents ribosomes as the targeting vectors for delivering nascent polypeptides to translocation sites. In conjunction with signal peptides, SRP and NAC contribute to this specificity of ribosomal function by regulating exposure of a ribosomal membrane attachment site that binds to receptors in the ER membrane.
Resumo:
The silver (svr) gene of Drosophila melanogaster is required for viability, and severe mutant alleles result in death prior to eclosion. Adult flies homozygous or hemizygous for weaker alleles display several visible phenotypes, including cuticular structures that are pale and silvery in color due to reduced melanization. We have identified and cloned the DNA encoding the svr gene and determined the sequence of several partially overlapping cDNAs derived from svr mRNAs. The predicted amino acid sequence of the polypeptides encoded by these cDNAs indicates that the silver proteins are members of the family of preprotein-processing carboxypeptidases that includes the human carboxypeptidases E, M, and N. One class of svr mRNAs is alternatively spliced to encode at least two polyproteins, each of which is composed of two carboxypeptidase domains.
Resumo:
To identify proteins that regulate the transcriptional activity of c-Jun, we have used the yeast two-hybrid screen to detect mammalian polypeptides that might interact functionally with the N-terminal segment of c-Jun, a known regulatory region. Among the proteins identified is a short form of Stat3 (designated Stat3 beta). Stat3 beta is missing the 55 C-terminal amino acid residues of the long form (Stat3 alpha) and has 7 additional amino acid residues at its C terminus. In the absence of added cytokines, expression of Stat3 beta (but not Stat3 alpha) in transfected cells activated a promoter containing the interleukin 6 responsive element of the rat alpha 2-macroglobulin gene; coexpression of Stat3 beta and c-Jun led to enhanced cooperative activation of the promoter. Nuclear extracts of cells transfected with a Stat3 beta expression plasmid formed a complex with an oligonucleotide containing a Stat3 binding site, whereas extracts of cells transfected with a Stat3 alpha plasmid did not. We conclude that there is a short form of Stat3 (Stat3 beta), that Stat3 beta is transcriptionally active under conditions where Stat3 alpha is not, and that Stat3 beta and c-Jun are capable of cooperative activation of certain promoters.
Resumo:
beta zero-Thalassemia is an inherited disorder characterized by the absence of beta-globin polypeptides derived from the affected allele. The molecular basis for this deficiency is a mutation of the adult beta-globin structural gene or cis regulatory elements that control beta-globin gene expression. A mouse model of this disease would enable the testing of therapeutic regimens designed to correct the defect. Here we report a 16-kb deletion that includes both adult beta-like globin genes, beta maj and beta min, in mouse embryonic stem cells. Heterozygous animals derived from the targeted cells are severely anemic with dramatically reduced hemoglobin levels, abnormal red cell morphology, splenomegaly, and markedly increased reticulocyte counts. Homozygous animals die in utero; however, heterozygous mice are fertile and transmit the deleted allele to progeny. The anemic phenotype is completely rescued in progeny derived from mating beta zero-thalassemic animals with transgenic mice expressing high levels of human hemoglobin A. The beta zero-thalassemic mice can be used to test genetic therapies for beta zero-thalassemia and can be bred with transgenic mice expressing high levels of human hemoglobin HbS to produce an improved mouse model of sickle cell disease.
Resumo:
The mechanism under which the signal-reception amino-terminal portion (A domain) of the prokaryotic enhancer-binding protein XylR controls the activity of the regulator has been investigated through complementation tests in vivo, in which the various protein segments were produced as independent polypeptides. Separate expression of the A domain repressed the otherwise constitutive activity of a truncated derivative of XylR deleted of its A domain (XylR delta A). Such inhibition was not released by m-xylene, the natural inducer of the system. Repression caused by the A domain was specific for XylR because it did not affect activation of the sigma 54 promoter PnifH by a derivative of its cognate regulator, NifA, deleted of its own A domain. The A domain was also unable to repress the activity of a NifA-XylR hybrid protein resulting from fusing two-thirds of the central domain of NifA to the carboxyl-terminal third of XylR, which includes its DNA-binding domain. The inhibitory effect caused by the A domain of XylR on XylR delta A seems, therefore, to result from specific interactions in trans between the two truncated proteins and not from mere hindering of an activating surface.
Resumo:
We describe the isolation and characterization of cDNAs encoding the precursor polypeptide of the 6.1-kDa polypeptide associated with the reaction center core of the photosystem II complex from spinach. PsbW, the gene encoding this polypeptide, is present in a single copy per haploid genome. The mature polypeptide with 54 amino acid residues is characterized by a hydrophobic transmembrane segment, and, although an intrinsic membrane protein, it carries a bipartite transit peptide of 83 amino acid residues which directs the N terminus of the mature protein into the chloroplast lumen. Thylakoid integration of this polypeptide does not require a delta pH across the membrane, nor is it azide-sensitive, suggesting that the polypeptide chain inserts spontaneously in an as yet unknown way. The PsbW mRNA levels are light regulated. Similar to cytochrome b559 and PsbS, but different from the chlorophyll-complexing polypeptides D1, D2, CP43, and CP47 of photosystem II, PsbW is present in etiolated spinach seedlings.
Resumo:
An EPR "spectroscopic ruler" was developed using a series of alpha-helical polypeptides, each modified with two nitroxide spin labels. The EPR line broadening due to electron-electron dipolar interactions in the frozen state was determined using the Fourier deconvolution method. These dipolar spectra were then used to estimate the distances between the two nitroxides separated by 8-25 A. Results agreed well with a simple alpha-helical model. The standard deviation from the model system was 0.9 A in the range of 8-25 A. This technique is applicable to complex systems such as membrane receptors and channels, which are difficult to access with high-resolution NMR or x-ray crystallography, and is expected to be particularly useful for systems for which optical methods are hampered by the presence of light-interfering membranes or chromophores.
Resumo:
The herpes simplex virus 1 (HSV-1) genome encodes seven polypeptides that are required for its replication. These include a heterodimeric DNA polymerase, a single-strand-DNA-binding protein, a heterotrimeric helicase/primase, and a protein (UL9 protein) that binds specifically to an HSV-1 origin of replication (oris). We demonstrate here that UL9 protein interacts specifically with the 180-kDa catalytic subunit of the cellular DNA polymerase alpha-primase. This interaction can be detected by immunoprecipitation with antibodies directed against either of these proteins, by gel mobility shift of an oris-UL9 protein complex, and by stimulation of DNA polymerase activity by the UL9 protein. These findings suggest that enzymes required for cellular DNA replication also participate in HSV-1 DNA replication.
Resumo:
Enteropathogenic Escherichia coli (EPEC), a major cause of pediatric diarrhea, adheres to epithelial cells and activates host cell signal transduction pathways. We have identified five proteins that are secreted by EPEC and show that this secretion process is critical for triggering signal transduction events in epithelial cells. Protein secretion occurs via two pathways: one secretes a 110-kDa protein and the other mediates export of the four remaining proteins. Secretion of all five proteins was regulated by temperature and the perA locus, two factors which regulate expression of other known EPEC virulence factors. Amino-terminal sequence analysis of the secreted polypeptides identified one protein (37 kDa) as the product of the eaeB gene, a genetic locus previously shown to be necessary for signal transduction. A second protein (39 kDa) showed significant homology with glyceraldehyde-3-phosphate dehydrogenase, while the other three proteins (110, 40, and 25 kDa) were unique. The secreted proteins associated with epithelial cells, and EaeB became resistant to protease digestion upon association, suggesting that intimate interactions are required for transducing signals.
Resumo:
Enteropathogenic Escherichia coli (EPEC) causes a characteristic histopathology in intestinal epithelial cells called the attaching and effacing lesion. Although the histopathological lesion is well described the bacterial factors responsible for it are poorly characterized. We have identified four EPEC chromosomal genes whose predicted protein sequences are similar to components of a recently described secretory pathway (type III) responsible for exporting proteins lacking a typical signal sequence. We have designated the genes sepA, sepB, sepC, and sepD (sep, for secretion of E. coli proteins). The predicted Sep polypeptides are similar to the Lcr (low calcium response) and Ysc (yersinia secretion) proteins of Yersinia species and the Mxi (membrane expression of invasion plasmid antigens) and Spa (surface presentation of antigens) regions of Shigella flexneri. Culture supernatants of EPEC strain E2348/69 contain several polypeptides ranging in size from 110 kDa to 19 kDa. Proteins of comparable size were recognized by human convalescent serum from a volunteer experimentally infected with strain E2348/69. A sepB mutant of EPEC secreted only the 110-kDa polypeptide and was defective in the formation of attaching and effacing lesions and protein-tyrosine phosphorylation in tissue culture cells. These phenotypes were restored upon complementation with a plasmid carrying an intact sepB gene. These data suggest that the EPEC Sep proteins are components of a type III secretory apparatus necessary for the export of virulence determinants.
Resumo:
The CD3 epsilon polypeptide contributes to the cell surface display as well as to the signal transduction properties of the T-cell antigen receptor complex. Intriguingly, the distribution of CD3 epsilon is not restricted to T cells, since activated mouse, human, and avian natural killer (NK) cells do express intracytoplasmic CD3 epsilon polypeptides. CD3 epsilon is also present in the cytoplasm of fetal thymic T/NK bipotential progenitor cells, suggesting that it constitutes a component of the NK differentiation program. We report here that the genetic disruption of CD3 epsilon exon 5 alters neither NK cell development nor in vitro and in vivo NK functions, although it profoundly blocked T-cell development. These results support the notion that CD3 epsilon is dispensable for mouse NK cell ontogeny and function and further suggest that the common NK/T-cell progenitor cell utilizes CD3 epsilon as a mandatory component only when differentiating toward the T-cell lineage.
Resumo:
We show that, after removal of the nascent polypeptide-associated complex (NAC) from ribosome-associated nascent chains, ribosomes synthesizing proteins lacking signal peptides are efficiently targeted to the endoplasmic reticulum (ER) membrane. After this mistargeting, translocation across the ER membrane occurs, albeit less efficiently than for a nascent secretory polypeptide, perhaps because the signal peptide is needed to catalyze the opening of the translocation pore. The mistargeting was prevented by the addition of purified NAC and was shown not to be mediated by the signal recognition particle and its receptor. Instead, it appears to be a consequence of the intrinsic affinity of ribosomes for membrane binding sites, since it can be blocked by competing ribosomes that lack associated nascent polypeptides. We propose that, when bound to a signalless ribosome-associated nascent polypeptide, NAC sterically blocks the site in the ribosome for membrane binding.
Resumo:
Genes containing the interferon-stimulated response element (ISRE) enhancer have been characterized as transcriptionally responsive primarily to type I interferons (IFN alpha/beta). Induction is due to activation of a multimeric transcription factor, interferon-stimulated gene factor 3 (ISGF3), which is activated by IFN alpha/beta but not by IFN gamma. We found that ISRE-containing genes were induced by IFN gamma as well as by IFN alpha in Vero cells. The IFN gamma response was dependent on the ISRE and was accentuated by preexposure of cells to IFN alpha, a treatment that increases the abundance of ISGF3 components. Overexpression of ISGF3 polypeptides showed that the IFN gamma response depended on the DNA-binding protein ISGF3 gamma (p48) as well as on the 91-kDa protein STAT91 (Stat1 alpha). The transcriptional response to IFN alpha required the 113-kDa protein STAT113 (Stat2) in addition to STAT91 and p48. Mutant fibrosarcoma cells deficient in each component of ISGF3 were used to confirm that IFN gamma induction of an ISRE reporter required p48 and STAT91, but not STAT113. A complex containing p48 and phosphorylated STAT91 but lacking STAT113 bound the ISRE in vitro. IFN gamma-induced activation of this complex, preferentially formed at high concentrations of p48 and STAT91, may explain some of the overlapping responses to IFN alpha and IFN gamma.