788 resultados para Poly(ethylene terephthalate)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chapter 1 of this thesis comprises a review of polyether polyamines, i.e., combinations of polyether scaffolds with polymers bearing multiple amino moieties. Focus is laid on controlled or living polymerization methods. Furthermore, fields in which the combination of cationic, complexing, and pH-sensitive properties of the polyamines and biocompatibility and water-solubility of polyethers promise enormous potential are presented. Applications include stimuli-responsive polymers with a lower critical solution temperature (LCST) and/or the ability to gel, preparation of shell cross-linked (SCL) micelles, gene transfection, and surface functionalization.rnIn Chapter 2, multiaminofunctional polyethers relying on the class of glycidyl amine comonomers for anionic ring-opening polymerization (AROP) are presented. In Chapter 2.1, N,N-diethyl glycidyl amine (DEGA) is introduced for copolymerization with ethylene oxide (EO). Copolymer microstructure is assessed using online 1H NMR kinetics, 13C NMR triad sequence analysis, and differential scanning calorimetry (DSC). The concurrent copolymerization of EO and DEGA is found to result in macromolecules with a gradient structure. The LCSTs of the resulting copolymers can be tailored by adjusting DEGA fraction or pH value of the environment. Quaternization of the amino moieties by methylation results in polyelectrolytes. Block copolymers are used for PEGylated gold nanoparticle formation. Chapter 2.2 deals with a glycidyl amine monomer with a removable protecting group at the amino moiety, for liberation of primary amines at the polyether backbone, which is N,N-diallyl glycidyl amine (DAGA). Its allyl groups are able to withstand the harsh basic conditions of AROP, but can be cleaved homogeneously after polymerization. Gradient as well as block copolymers poly(ethylene glycol)-PDAGA (PEG-PDAGA) are obtained. They are analyzed regarding their microstructure, LCST behavior, and cleavage of the protecting groups. rnChapter 3 describes applications of multi(amino)functional polyethers for functionalization of inorganic surfaces. In Chapter 3.1, they are combined with an acetal-protected catechol initiator, leading to well-defined PEG and heteromultifunctional PEG analogues. After deprotection, multifunctional PEG ligands capable of attaching to a variety of metal oxide surfaces are obtained. In a cooperative project with the Department of Inorganic and Analytical Chemistry, JGU Mainz, their potential is demonstrated on MnO nanoparticles, which are promising candidates as T1 contrast agents in magnetic resonance imaging. The MnO nanoparticles are solubilized in aqueous solution upon ligand exchange. In Chapter 3.2, a concept for passivation and functionalization of glass surfaces towards gold nanorods is developed. Quaternized mPEG-b-PqDEGA diblock copolymers are attached to negatively charged glass surfaces via the cationic PqDEGA blocks. The PEG blocks are able to suppress gold nanorod adsorption on the glass in the flow cell, analyzed by dark field microscopy.rnChapter 4 highlights a straightforward approach to poly(ethylene glycol) macrocycles. Starting from commercially available bishydroxy-PEG, cyclic polymers are available by perallylation and ring-closing metathesis in presence of Grubbs’ catalyst. Purification of cyclic PEG is carried out using α-cyclodextrin. This cyclic sugar derivative forms inclusion complexes with remaining unreacted linear PEG in aqueous solution. Simple filtration leads to pure macrocycles, as evidenced by SEC and MALDI-ToF mass spectrometry. Cyclic polymers from biocompatible precursors are interesting materials regarding their increased blood circulation time compared to their linear counterparts.rnIn the Appendix, A.1, a study of the temperature-dependent water-solubility of polyether copolymers is presented. Macroscopic cloud points, determined by turbidimetry, are compared with microscopic aggregation phenomena, monitored by continuous wave electron paramagnetic resonance (CW EPR) spectroscopy in presence of the amphiphilic spin probe and model drug (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). These thermoresponsive polymers are promising candidates for molecular transport applications. The same techniques are applied in Chapter A.2 to explore the pH-dependence of the cloud points of PEG-PDEGA copolymers in further detail. It is shown that the introduction of amino moieties at the PEG backbone allows for precise manipulation of complex phase transition modes. In Chapter A.3, multi-hydroxyfunctional polysilanes are presented. They are obtained via copolymerization of the acetal-protected dichloro(isopropylidene glyceryl propyl ether)methylsilane monomer. The hydroxyl groups are liberated through acidic work-up, yielding versatile access to new multifunctional polysilanes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ziel der vorliegenden Dissertation war es, Einblicke in das Kristallisationsverhalten weicher Materie („soft matter“), wie verschiedener Polymere oder Wasser, unter räumlicher Einschränkung („confinement“) zu erlangen. Dabei sollte untersucht werden, wie, weshalb und wann die Kristallisation in nanoporösen Strukturen eintritt. Desweiteren ist Kristallisation weicher Materie in nanoporösen Strukturen nicht nur aus Aspekten der Grundlagenforschung von großem Interesse, sondern es ergeben sich zahlreiche praktische Anwendungen. Durch die gezielte Steuerung der Kristallinität von Polymeren könnten somit Materialien mit verschiendenen mechanischen und optischen Eigenschaften erhalten werden. Desweiteren wurde auch räumlich eingeschränktes Wasser untersucht. Dieses spielt eine wichtige Rolle in der Molekularbiologie, z.B. für das globuläre Protein, und als Wolkenkondensationskeime in der Atmosphärenchemie und Physik. Auch im interstellaren Raum ist eingeschränktes Wasser in Form von Eispartikeln anzutreffen. Die Kristallisation von eingeschränktem Wasser zu verstehen und zu beeinflussen ist letztlich auch für die Haltbarkeit von Baumaterialien wie etwa Zement von großem Interesse.rnUm dies zu untersuchen wird Wasser in der Regel stark abgekühlt und das Kristallisationsverhalten in Abhängigkeit des Volumens untersucht. Dabei wurde beobachtet, dass Mikro- bzw. Nanometer große Volumina erst ab -38 °C bzw. -70 °C kristallisieren. Wasser unterliegt dabei in der Regel dem Prozess der homogenen Nukleation. In der Regel gefriert Wasser aber bei höheren Temperaturen, da durch Verunreinigungen eine vorzeitige, heterogene Nukleation eintritt.rnDie vorliegende Arbeit untersucht die sachdienlichen Phasendiagramme von kristallisierbaren Polymeren und Wasser unter räumlich eingeschränkten Bedingungen. Selbst ausgerichtetes Aluminiumoxid (AAO) mit Porengrößen im Bereich von 25 bis 400 nm wurden als räumliche Einschränkung sowohl für Polymere als auch für Wasser gewählt. Die AAO Nanoporen sind zylindrisch und parallel ausgerichtet. Außerdem besitzen sie eine gleichmäßige Porenlänge und einen gleichmäßigen Durchmesser. Daher eignen sie sich als Modelsystem um Kristallisationsprozesse unter wohldefinierter räumlicher Einschränkung zu untersuchen.rnEs wurden verschiedene halbkristalline Polymere verwendet, darunter Poly(ethylenoxid), Poly(ɛ-Caprolacton) und Diblockcopolymere aus PEO-b-PCL. Der Einfluss der Porengröße auf die Nukleation wurde aus verschiedenen Gesichtspunkten untersucht: (i) Einfluss auf den Nukleationmechanismus (heterogene gegenüber homogener Nukleation), (ii) Kristallorientierung und Kristallinitätsgrad und (iii) Zusammenhang zwischen Kristallisationstemperatur bei homogener Kristallisation und Glasübergangstemperatur.rnEs konnte gezeigt werden, dass die Kristallisation von Polymeren in Bulk durch heterogene Nukleation induziert wird und das die Kristallisation in kleinen Poren hauptsächlich über homogene Nukleation mit reduzierter und einstellbarer Kristallinität verläuft und eine hohe Kristallorientierung aufweist. Durch die AAOs konnte außerdem die kritische Keimgröße für die Kristallisation der Polymere abgeschätzt werden. Schließlich wurde der Einfluss der Polydispersität, von Oligomeren und anderen Zusatzstoffen auf den Nukleationsmechanismus untersucht.rn4rnDie Nukleation von Eis wurde in den selben AAOs untersucht und ein direkter Zusammenhang zwischen dem Nukleationstyp (heterogen bzw. homogen) und der gebildeten Eisphase konnte beobachtet werden. In größeren Poren verlief die Nukleation heterogen, wohingegen sie in kleineren Poren homogen verlief. Außerdem wurde eine Phasenumwandlung des Eises beobachtet. In den größeren Poren wurde hexagonales Eis nachgewiesen und unter einer Porengröße von 35 nm trat hauptsächlich kubisches Eis auf. Nennenswerter Weise handelte es sich bei dem kubischem Eis nicht um eine metastabile sondern eine stabile Phase. Abschließend wird ein Phasendiagramm für räumlich eingeschränktes Wasser vorgeschlagen. Dieses Phasendiagramm kann für technische Anwendungen von Bedeutung sein, so z.B. für Baumaterial wie Zement. Als weiteres Beispiel könnten AAOs, die die heterogene Nukleation unterdrücken (Porendurchmesser ≤ 35 nm) als Filter für Reinstwasser zum Einsatz kommen.rnNun zur Anfangs gestellten Frage: Wie unterschiedlich sind Wasser und Polymerkristallisation voneinander unter räumlicher Einschränkung? Durch Vergleich der beiden Phasendiagramme kommen wir zu dem Schluss, dass beide nicht fundamental verschieden sind. Dies ist zunächst verwunderlich, da Wasser ein kleines Molekül ist und wesentlich kleiner als die kleinste Porengröße ist. Wasser verfügt allerdings über starke Wasserstoffbrückenbindungen und verhält sich daher wie ein Polymer. Daher auch der Name „Polywasser“.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Different concepts for the synthesis of sulfur-containing polymers as well as their adsorption onto gold surfaces were studied. The present work is divided into three parts. The main part focuses on the synthesis of poly(1,2-alkylene sulfides) (“polysulfides”) with complex architectures on the basis of polyether-based macroinitiators by the anionic ring-opening polymerization of ethylene sulfide and propylene sulfide. This synthetic tool kit allowed the synthesis of star-shaped, brush-like, comb-like and pom-pom-like polysulfides, the latter two with an additional poly(ethylene glycol) chain. Additionally, the number of polysulfide arms as well as the monomer composition could be varied over a wide range to obtain copolymers with multiple thioether functionalities.rnThe second section deals with the synthesis of a novel lipoic acid-based initiator for ring-opening polymerizations for lactones and epoxides. A straightforward approach was selected to accomplish the ability to obtain tailored polymers with a common used disulfide-anchoring group, without the drawbacks of post-polymerization functionalization. rnIn the third part, a new class of block-copolymers consisting of polysulfides and polyesters were investigated. For the first time this approach enabled the use of hydroxyl-terminated poly(propylene sulfide) as macroinitiator for the synthesis of a second block.rnThe adsorption efficiency of those different polymer classes onto gold nanoparticles as well as gold rnsupports was studied via different methods.rn

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanoindentation is a valuable tool for characterization of biomaterials due to its ability to measure local properties in heterogeneous, small or irregularly shaped samples. However, applying nanoindentation to compliant, hydrated biomaterials leads to many challenges including adhesion between the nanoindenter tip and the sample. Although adhesion leads to overestimation of the modulus of compliant samples when analyzing nanoindentation data using traditional analysis techniques, most studies of biomaterials have ignored its effects. This paper demonstrates two methods for managing adhesion in nanoindentation analysis, the nano-JKR force curve method and the surfactant method, through application to two biomedically-relevant compliant materials, poly(dimethyl siloxane) (PDMS) elastomers and poly(ethylene glycol) (PEG) hydrogels. The nano-JKR force curve method accounts for adhesion during data analysis using equations based on the Johnson-Kendall-Roberts (JKR) adhesion model, while the surfactant method eliminates adhesion during data collection, allowing data analysis using traditional techniques. In this study, indents performed in air or water resulted in adhesion between the tip and the sample, while testing the same materials submerged in Optifree Express() contact lens solution eliminated tip-sample adhesion in most samples. Modulus values from the two methods were within 7% of each other, despite different hydration conditions and evidence of adhesion. Using surfactant also did not significantly alter the properties of the tested material, allowed accurate modulus measurements using commercial software, and facilitated nanoindentation testing in fluids. This technique shows promise for more accurate and faster determination of modulus values from nanoindentation of compliant, hydrated biological samples. Copyright 2013 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Enhancing osseointegration through surface immobilization of multiple short peptide sequences that mimic extracellular matrix (ECM) proteins, such as arginine-glycine-aspartic acid (RGD) and lysine-arginine-serine-arginine (KRSR), has not yet been extensively explored. Additionally, the effect of biofunctionalizing chemically modified sandblasted and acid-etched surfaces (modSLA) is unknown. The present study evaluated modSLA implant surfaces modified with RGD and KRSR for potentially enhanced effects on bone apposition and interfacial shear strength during early stages of bone regeneration. Two sets of experimental implants were placed in the maxillae of eight miniature pigs, known for their rapid wound healing kinetics: bone chamber implants creating two circular bone defects for histomorphometric analysis on one side and standard thread configuration implants for removal torque testing on the other side. Three different biofunctionalized modSLA surfaces using poly-L-lysine-graft-poly(ethylene glycol) (PLL-g-PEG) as a carrier minimizing nonspecific protein adsorption [(i) 20 pmol cm⁻² KRSR alone (KRSR); or in combination with RGD in two different concentrations; (ii) 0.05 pmol cm⁻² RGD (KRSR/RGD-1); (iii) 1.26 pmol cm⁻² RGD (KRSR/RGD-2)] were compared with (iv) control modSLA. Animals were sacrificed at 2 weeks. Removal torque values (701.48-780.28 N mm), bone-to-implant contact (BIC) (35.22%-41.49%), and new bone fill (28.58%-30.62%) demonstrated no significant differences among treatments. It may be concluded that biofunctionalizing modSLA surfaces with KRSR and RGD derivatives of PLL-g-PEG polymer does not increase BIC, bone fill, or interfacial shear strength.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Drug release from a fluid-contacting biomaterial is simulated using a microfluidic device with channels defined by solute-loaded hydrogel. In order to mimic a drug delivery device, a solution of poly(ethylene glycol) diacrylate (PEG-DA), solute, and photoinitiator is cured inside a microfluidic device with a channel through the center ofthe hydrogel. As water is pumped through the channel, solute diffuses out of the hydrogel and into the water. Channel sizes within the devices range from 300 µm to 1000 µm to simulate vessels within the body. The properties of the PEG hydrogel were characterizedby the extent of crosslinking, the swelling ratio, and the mesh size of the gel. The structure of the hydrogel was related to the UV exposure dosage and the initial water and solute content in the PEG-DA solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microfluidic devices can be used for many applications, including the formation of well-controlled emulsions. In this study, the capability to continuously create monodisperse droplets in a microfluidic device was used to form calcium-alginate capsules.Calcium-alginate capsules have many potential uses, such as immunoisolation of cells and microencapsulation of active drug ingredients or bitter agents in food or beverage products. The gelation of calcium-alginate capsules is achieved by crosslinking sodiumalginate with calcium ions. Calcium ions dissociated from calcium carbonate due to diffusion of acetic acid from a sunflower oil phase into an aqueous droplet containing sodium-alginate and calcium carbonate. After gelation, the capsules were separated from the continuous oil phase into an aqueous solution for use in biological applications. Typically, capsules are separated bycentrifugation, which can damage both the capsules and the encapsulated material. A passive method achieves separation without exposing the encapsulated material or the capsules to large mechanical forces, thereby preventing damage. To achieve passiveseparation, the use of a microfluidic device with opposing channel wa hydrophobicity was used to stabilize co-laminar flow of im of hydrophobicity is accomplished by defining one length of the channel with a hydrogel. The chosen hydrogel was poly (ethylene glycol) diacrylate, which adheres to the glass surface through the use of self-assembled monolayer of 3-(trichlorosilyl)-propyl methacrylate. Due to the difference in surface energy within the channel, the aqueous stream is stabilized near a hydrogel and the oil stream is stabilized near the thiolene based optical adhesive defining the opposing length of the channel. Passive separation with co-laminar flow has shown success in continuously separating calcium-alginatecapsules from an oil phase into an aqueous phase. In addition to successful formation and separation of calcium alginate capsules,encapsulation of Latex micro-beads and viable mammalian cells has been achieved. The viability of encapsulated mammalian cells was determined using a live/dead stain. The co-laminar flow device has also been demonstrated as a means of separating liquid-liquidemulsions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel microfluidic method is proposed for studying diffusion of small molecules in a hydrogel. Microfluidic devices were prepared with semi-permeable microchannels defined by crosslinked poly(ethylene glycol) (PEG). Uptake of dye molecules from aqueous solutions flowing through the microchannels was observedoptically and diffusion of the dye into the hydrogel was quantified. To complement the diffusion measurements from the microfluidic studies, nuclear magnetic resonance(NMR) characterization of the diffusion of dye in the PEG hydrogels was performed. The diffusion of small molecules in a hydrogel is relevant to applications such asdrug delivery and modeling transport for tissue-engineering applications. The diffusion of small molecules in a hydrogel is dependent on the extent of crosslinking within the gel, gel structure, and interactions between the diffusive species and the hydrogel network. These effects were studied in a model environment (semi-infinite slab) at the hydrogelfluid boundary in a microfluidic device. The microfluidic devices containing PEG microchannels were fabricated using photolithography. The unsteady diffusion of small molecules (dyes) within the microfluidic device was monitored and recorded using a digital microscope. The information was analyzed with techniques drawn from digital microscopy and image analysis to obtain concentration profiles with time. Using a diffusion model to fit this concentration vs. position data, a diffusion coefficient was obtained. This diffusion coefficient was compared to those from complementary NMR analysis. A pulsed field gradient (PFG) method was used to investigate and quantify small molecule diffusion in gradient (PFG) method was used to investigate and quantify small molecule diffusion in hydrogels. There is good agreement between the diffusion coefficients obtained from the microfluidic methods and those found from the NMR studies. The microfluidic approachused in this research enables the study of diffusion at length scales that approach those of vasculature, facilitating models for studying drug elution from hydrogels in blood-contacting applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogels are composed of cross-linked networks of hydrophilic polymers that are biocompatible due to their high water content. Mass transfer through hydrogels has been suggested as an effective method of drug delivery, specifically in degradable polymers to minimize lasting effects within the body. Diffusion of small molecules in poly (ethylene glycol) diacrylate (PEG-DA) and dextran methacrylate (dex-MA) hydrogels was characterized in a microfluidic device and by complementary techniques. Microfluidic devices were prepared by crosslinking a formulation of hydrogel and photo-initiator, with and without visible dye, using photolithography to define a central microchannel. Channel sizes within the devices were approximately 600 ¿m to simulate vessels within the body. The microfluidic technique allows for both image and effluent analyses. To visualize the diffusive behavior within the dextran hydrogel, methylene blue and sulforhodamine 101 dyes were used in both elution and uptake experiments. Three analysis techniques for measuring diffusion coefficients were used to quantify the diffusion of solute in the hydrogel, including optical microscopy, characterization of device effluent, and NMR analyses. The optical microscopy technique analyzes images of the dye diffusion captured by a stereomicroscope to generate dye concentration v. position profiles. The data was fit to a diffusion model to determine diffusion coefficients and the dye release profile. In a typical elution experiment, aqueous solution is pumped through the microchannel and dye diffuses out of the hydrogel and into the aqueous phase. During elution, images are taken at regular time intervals and the effluent was collected. Analysis of the device effluent was performed using ultraviolet-visible (UV/Vis) spectroscopy to determine the effluent dye concentration and thus a short-time diffusion coefficient. Nuclear magnetic resonance (NMR) was used to determine a free diffusion coefficient of molecules in hydrogel without the effect of a concentration gradient. Diffusion coefficients for methylene blue and sulforhodamine 101 dyes in dex-MA hydrogel calculated using the three analysis methods all agree well. It was determined that utilizing a combination of the three techniques offers greater insight into molecular diffusion in hydrogels than employing each technique individually. The use of the same microfluidic devices used to measure diffusion is explored in the use of studying the degradation of dex-MA hydrogels. By combining what is known about the degradation rate in regards to the effect of pH and crosslinking and the ability to use a dye solution in contrast to establish the hydrogel boundaries could be a novel approach to studying hydrogel degradation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Drug release from a fluid-contacting biomaterial is simulated using a microfluidic device with a channel defined by solute-loaded hydrogel; as water is pumped through the channel, solute transfers from the hydrogel into the water. Optical analysis of in-situ hydrogels, characterization of the microfluidic device effluent, and NMR methods were used to find diffusion coefficients of several dyes (model drugs) in poly( ethylene glycol) diacrylate (PEG-DA) hydrogels. Diffusion coefficients for methylene blue and sulforhodamine 101 in PEG-DA calculated using the three methods are in good agreement; both dyes are mobile in the hydrogel and elute from the hydrogel at the aqueous channel interface. However, the dye acid blue 22 deviates from typical diffusion behavior and does not release as expected from the hydrogel. Importantly, only the microfluidic method is capable of detecting this behavior. Characterizing solute diffusion with a combination of NMR, optical and effluent methods offer greater insight into molecular diffusion in hydrogels than employing each technique individually. The NMR method made precise measurements for solute diffusion in all cases. The microfluidic optical method was effective for visualizing diffusion of the optically active solutes. The optical and effluent methods show potential to be used to screen solutes to determine if they elute from a hydrogel in contact with flowing fluid. Our data suggest that when designing a drug delivery device, analyzing the diffusion from the molecular level to the device level is important to establish a complete picture of drug elution, and microfluidic methods to study such diffusion can play a key role. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microrough titanium (Ti) surfaces of dental implants have demonstrated more rapid and greater bone apposition when compared with machined Ti surfaces. However, further enhancement of osteoblastic activity and bone apposition by bio-functionalizing the implant surface with a monomolecular adsorbed layer of a co-polymer - i.e., poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and its derivatives (PLL-g-PEG/PEG-peptide) - has never been investigated. The aim of the present study was to examine early bone apposition to a modified sandblasted and acid-etched (SLA) surface coated with an Arg-Gly-Asp (RGD)-peptide-modified polymer (PLL-g-PEG/PEG-RGD) in the maxillae of miniature pigs, and to compare it with the standard SLA surface. Test and control implants had the same microrough topography (SLA), but differed in their surface chemistry (polymer coatings). The following surfaces were examined histomorphometrically: (i) control - SLA without coating; (ii) (PLL-g-PEG); (iii) (PLL-g-PEG/PEG-RDG) (RDG, Arg-Asp-Gly); and (iv) (PLL-g-PEG/PEG-RGD). At 2 weeks, RGD-coated implants demonstrated significantly higher percentages of bone-to-implant contact as compared with controls (61.68% vs. 43.62%; P < 0.001). It can be concluded that the (PLL-g-PEG/PEG-RGD) coatings may promote enhanced bone apposition during the early stages of bone regeneration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The molecular engineering of cell-instructive artificial extracellular matrices is a powerful means to control cell behavior and enable complex processes of tissue formation and regeneration. This work reports on a novel method to produce such smart biomaterials by recapitulating the crosslinking chemistry and the biomolecular characteristics of the biopolymer fibrin in a synthetic analog. We use activated coagulation transglutaminase factor XIIIa for site-specific coupling of cell adhesion ligands and engineered growth factor proteins to multiarm poly(ethylene glycol) macromers that simultaneously form proteolytically sensitive hydrogel networks in the same enzyme-catalyzed reaction. Growth factor proteins are quantitatively incorporated and released upon cell-derived proteolytic degradation of the gels. Primary stromal cells can invade and proteolytically remodel these networks both in an in vitro and in vivo setting. The synthetic ease and potential to engineer their physicochemical and bioactive characteristics makes these hybrid networks true alternatives for fibrin as provisional drug delivery platforms in tissue engineering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gene-directed enzyme prodrug therapy is a form of cancer therapy in which delivery of a gene that encodes an enzyme is able to convert a prodrug, a pharmacologically inactive molecule, into a potent cytotoxin. Currently delivery of gene and prodrug is a two-step process. Here, we propose a one-step method using polymer nanocarriers to deliver prodrug, gene and cytotoxic drug simultaneously to malignant cells. Prodrugs acyclovir, ganciclovir and 5-doxifluridine were used to directly to initiate ring-opening polymerization of epsilon-caprolactone, forming a hydrophobic prodrug-tagged poly(epsilon-caprolactone) which was further grafted with hydrophilic polymers (methoxy poly(ethylene glycol), chitosan or polyethylenemine) to form amphiphilic copolymers for micelle formation. Successful synthesis of copolymers and micelle formation was confirmed by standard analytical means. Conversion of prodrugs to their cytotoxic forms was analyzed by both two-step and one-step means i.e. by first delivering gene plasmid into cell line HT29 and then challenging the cells with the prodrug-tagged micelle carriers and secondly by complexing gene plasmid onto micelle nanocarriers and delivery gene and prodrug simultaneously to parental HT29 cells. Anticancer effectiveness of prodrug-tagged micelles was further enhanced by encapsulating chemotherapy drugs doxorubicin or SN-38. Viability of colon cancer cell line HT29 was significantly reduced. Furthermore, in an effort to develop a stealth and targeted carrier, CD47-streptavidin fusion protein was attached onto the micelle surface utilizing biotin-streptavidin affinity. CD47, a marker of self on the red blood cell surface, was used for its antiphagocytic efficacy, results showed that micelles bound with CD47 showed antiphagocytic efficacy when exposed to J774A.1 macrophages. Since CD47 is not only an antiphagocytic ligand but also an integrin associated protein, it was used to target integrin alpha(v)beta(3), which is overexpressed on tumor-activated neovascular endothelial cells. Results showed that CD47-tagged micelles had enhanced uptake when treated to PC3 cells which have high expression of alpha(v)beta(3). The synthesized multifunctional polymeric micelle carriers developed could offer a new platform for an innovative cancer therapy regime.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to harness the unique properties of nanoparticles for novel clinical applications and to modulate their uptake into specific immune cells we designed a new library of homo- and hetero-functional fluorescence-encoded gold nanoparticles (Au-NPs) using different poly(vinyl alcohol) and poly(ethylene glycol)-based polymers for particle coating and stabilization. The encoded particles were fully characterized by UV-Vis and fluorescence spectroscopy, zeta potential and dynamic light scattering. The uptake by human monocyte derived dendritic cells in vitro was studied by confocal laser scanning microscopy and quantified by fluorescence-activated cell sorting and inductively coupled plasma atomic emission spectroscopy. We show how the chemical modification of particle surfaces, for instance by attaching fluorescent dyes, can conceal fundamental particle properties and modulate cellular uptake. In order to mask the influence of fluorescent dyes on cellular uptake while still exploiting its fluorescence for detection, we have created hetero-functionalized Au-NPs, which again show typical particle dependent cellular interactions. Our study clearly prove that the thorough characterization of nanoparticles at each modification step in the engineering process is absolutely essential and that it can be necessary to make substantial adjustments of the particles in order to obtain reliable cellular uptake data, which truly reflects particle properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In vitro engineered tissues which recapitulate functional and morphological properties of bone marrow and bone tissue will be desirable to study bone regeneration under fully controlled conditions. Among the key players in the initial phase of bone regeneration are mesenchymal stem cells (MSCs) and endothelial cells (ECs) that are in close contact in many tissues. Additionally, the generation of tissue constructs for in vivo transplantations has included the use of ECs since insufficient vascularization is one of the bottlenecks in (bone) tissue engineering. Here, 3D cocultures of human bone marrow derived MSCs (hBM-MSCs) and human umbilical vein endothelial cells (HUVECs) in synthetic biomimetic poly(ethylene glycol) (PEG)-based matrices are directed toward vascularized bone mimicking tissue constructs. In this environment, bone morphogenetic protein-2 (BMP-2) or fibroblast growth factor-2 (FGF-2) promotes the formation of vascular networks. However, while osteogenic differentiation is achieved with BMP-2, the treatment with FGF-2 suppressed osteogenic differentiation. Thus, this study shows that cocultures of hBM-MSCs and HUVECs in biological inert PEG matrices can be directed toward bone and bone marrow-like 3D tissue constructs.