828 resultados para Playful Computing


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel cost-effective and low-latency wormhole router for packet-switched NoC designs, tailored for FPGA, is presented. This has been designed to be scalable at system level to fully exploit the characteristics and constraints of FPGA based systems, rather than custom ASIC technology. A key feature is that it achieves a low packet propagation latency of only two cycles per hop including both router pipeline delay and link traversal delay - a significant enhancement over existing FPGA designs - whilst being very competitive in terms of performance and hardware complexity. It can also be configured in various network topologies including 1-D, 2-D, and 3-D. Detailed design-space exploration has been carried for a range of scaling parameters, with the results of various design trade-offs being presented and discussed. By taking advantage of abundant buildin reconfigurable logic and routing resources, we have been able to create a new scalable on-chip FPGA based router that exhibits high dimensionality and connectivity. The architecture proposed can be easily migrated across many FPGA families to provide flexible, robust and cost-effective NoC solutions suitable for the implementation of high-performance FPGA computing systems. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scheduling problem in distributed data-intensive computing environments has become an active research topic due to the tremendous growth in grid and cloud computing environments. As an innovative distributed intelligent paradigm, swarm intelligence provides a novel approach to solving these potentially intractable problems. In this paper, we formulate the scheduling problem for work-flow applications with security constraints in distributed data-intensive computing environments and present a novel security constraint model. Several meta-heuristic adaptations to the particle swarm optimization algorithm are introduced to deal with the formulation of efficient schedules. A variable neighborhood particle swarm optimization algorithm is compared with a multi-start particle swarm optimization and multi-start genetic algorithm. Experimental results illustrate that population based meta-heuristics approaches usually provide a good balance between global exploration and local exploitation and their feasibility and effectiveness for scheduling work-flow applications. © 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a general scheme for sequential one-way quantum computation where static systems with long-living quantum coherence (memories) interact with moving systems that may possess very short coherence times. Both the generation of the cluster state needed for the computation and its consumption by measurements are carried out simultaneously. As a consequence, effective clusters of one spatial dimension fewer than in the standard approach are sufficient for computation. In particular, universal computation requires only a one-dimensional array of memories. The scheme applies to discrete-variable systems of any dimension as well as to continuous-variable ones, and both are treated equivalently under the light of local complementation of graphs. In this way our formalism introduces a general framework that encompasses and generalizes in a unified manner some previous system-dependent proposals. The procedure is intrinsically well suited for implementations with atom-photon interfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extension of approximate computing, significance-based computing exploits applications' inherent error resiliency and offers a new structural paradigm that strategically relaxes full computational precision to provide significant energy savings with minimal performance degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a novel discrete cosine transform (DCT) architecture that allows aggressive voltage scaling for low-power dissipation, even under process parameter variations with minimal overhead as opposed to existing techniques. Under a scaled supply voltage and/or variations in process parameters, any possible delay errors appear only from the long paths that are designed to be less contributive to output quality. The proposed architecture allows a graceful degradation in the peak SNR (PSNR) under aggressive voltage scaling as well as extreme process variations. Results show that even under large process variations (±3σ around mean threshold voltage) and aggressive supply voltage scaling (at 0.88 V, while the nominal voltage is 1.2 V for a 90-nm technology), there is a gradual degradation of image quality with considerable power savings (71% at PSNR of 23.4 dB) for the proposed architecture, when compared to existing implementations in a 90-nm process technology. © 2006 IEEE.