976 resultados para Plateau Mont-Royal
Resumo:
We measured the net ecosystem CO2 exchange (NEE) in an alpine meadow ecosystem (latitude 37degrees29'-45'N, longitude 101degrees12'-23'E, 3250 m above sea level) on the Qinghai-Tibetan Plateau throughout 2002 by the eddy covariance method to examine the carbon dynamics and budget on this unique plateau. Diurnal changes in gross primary production (GPP) and ecosystem respiration (R-e) showed that an afternoon increase of NEE was highly associated with an increase of R-e. Seasonal changes in GPP corresponded well to changes in the leaf area index and daily photosynthetic photon flux density. The ratio of GPP/R-e was high and reached about 2.0 during the peak growing season, which indicates that mainly autotrophic respiration controlled the carbon dynamics of the ecosystem. Seasonal changes in mean GPP and R-e showed compensatory behavior as reported for temperate and Mediterranean ecosystems, but those of GPP(max) and R-emax were poorly synchronized. The alpine ecosystem exhibited lower GPP (575 g C m(-2) y(-1)) than, but net ecosystem production (78.5 g C m(-2) y(-1)) similar to, that of subalpine forest ecosystems. The results suggest that the alpine meadow behaved as a CO2 sink during the 1-year measurement period but apparently sequestered a rather small amount of C in comparison with similar alpine ecosystems.
Resumo:
We used the eddy covariance method to measure the M exchange between the atmosphere and an alpine meadow ecosystem (37degrees29-45'N, 101degrees12-23'E, 3250m a.s.l.) on the Qinghai-Tibetan Plateau, China in the 2001 and 2002 growing seasons. The maximum rates Of CO2 uptake and release derived from the diurnal course Of CO2 flux (FCO2) were -10.8 and 4.4 mumol m(-2) s(-1), respectively, indicating a relatively high net carbon sequestration potential as compared to subalpine coniferous forest at similar elevation and latitude. The largest daily CO2 uptake was 3.9 g cm(-2) per day on 7 July 2002, which is less than half of those reported for lowland grassland and forest at similar latitudes. The daily CO2 uptake during the measurement period indicated that the alpine ecosystem might behave as a sink of atmospheric M during the growing season if the carbon lost due to grazing is not significant. The daytime CO2 uptake was linearly correlated with the daily photosynthetic photon flux density each month. The nighttime averaged F-CO2 showed a positive exponential correlation with the soil temperature, but apparently negative correlation with the soil water content. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We measured methane (CH4) emissions in the Luanhaizi wetland, a typical alpine wetland on the Qinghai-Tibetan Plateau, China, during the plant growth season (early July to mid-September) in 2002. Our aim was to quantify the spatial and temporal variation of CH4 flux and to elucidate key factors in this variation. Static chamber measurements of CH4 flux were made in four vegetation zones along a gradient of water depth. There were three emergent-plant zones (Hippuris-dominated; Scirpus-dominated; and Carex-dominated) and one submerged-plant zone (Potamogeton-dominated). The smallest CH4 flux (seasonal mean = 33.1 mg CH4 m(-2) d(-1)) was, observed in the Potamogeton-dominated zone, which occupied about 74% of the total area of the wetland. The greatest CH4 flux (seasonal mean = 214 mg CH4 m(-2) d(-1)) was observed in the Hippuris-dominated zone, in the second-deepest water area. CH4 flux from three zones (excluding the Carex-dominated zone) showed a marked diurnal change and decreased dramatically under dark conditions. Light intensity had a major influence on the temporal variation in CH4 flux, at least in three of the zones. Methane fluxes from all zones increased during the growing season with increasing aboveground biomass. CH4 flux from the Scirpus-dominated zone was significantly lower than in the other emergent-plant zones despite the large biomass, because the root and rhizome intake ports for CH4 transport in the dominant species were distributed in shallower and more oxidative soil than occupied in the other zones. Spatial and temporal variation in CH4 flux from the alpine wetland was determined by the vegetation zone. Among the dominant species in each zone, there were variations in the density and biomass of shoots, gas-transport system, and root-rhizome architecture. The CH4 flux from a typical alpine wetland on the Qinghai-Tibetan Plateau was as high as those of other boreal and alpine wetlands. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The impact of burrows constructed by plateau zokors Myospalax fontanierii (Milne-Edwards, 1867) on alpine meadow vegetation on the Qinghai-Xizang (Tibetan) plateau was investigated. Plant samples taken from quadrats directly over active zokor burrows, back-filled burrows, adjacent burrow controls, and random sites from a field, in which no burrows or mounds occurred were compared. The biomass of plants (below- and above-ground) directly over shallow active burrows was significantly lower than on control plots. This reduction in biomass was not significantly different than that between deep active burrows and control plots. There were no significant differences between above- and below-ground plant biomass on areas perpendicular to active burrows when compared to random sites. Back-filling soil in burrows could promote the growth of above-ground monocotyledonous plants. However, the burrowing activities of zokors had a negative effect on biomass of dicotyledonous plants.
Resumo:
Ligularia, a highly diversified genus in the eastern Qinghai-Tibet Plateau and adjacent areas, was chosen as a suitable subject in which to study speciation patterns in this 'hot spot' area at the chromosomal level. Chromosome numbers and karyotypes were studied in 23 populations of 14 species, most of which are endemic to this area. The basic number x = 29 was confirmed for all species. Ligularia virgaurea was found to have diploid and triploid cytotypes, 2n = 58 and 87. Other species are only diploid, with 2n = 58. The karyotypes of all populations within any species, and all species spanning most sections and covering most of the morphological range in Ligularia, are very similar to each other, belonging to type 2A according to Stebbin's classification. This karyotype was also found in its close allies, e.g. Cremanthodium, Ligulariopsis, Parasenecio, and Sinacalia. Aneuploid reduction of chromosome number from 2n = 60 to 58 and karyotypic variation was found in Ligularia and its allies. Such a chromosomal pattern with few polyploids infers that variation of karyotype structure at the diploid level seems to be the predominant feature of chromosomal evolution in this group and sympatric speciation via hybridization and polyploidization has played a minor role in its species diversity. (C) 2004 The Linnean Society of London
Resumo:
Hypoxia-inducible factor I is a transcription factor composed of HIF-1alpha and HIF-1beta. It plays an important role in the signal transduction of cell response to hypoxia. Plateau pika (Ochotona curzoniae) is a high hypoxia-tolerant and cold adaptation species livin only at 3000-5000m above sea level on the Qinghai-Tibet Plateau. In this study, HIF-1alpha cDNA of plateau pika was cloned and its expression in various tissues was studied. The results indicated that plateau pika HIF-1alpha cDNA was highly identical to those of the human (82%), bovine (89%), mouse (82%), and Norway rat (77%). The deduced amino acid sequence (822 bp) showed 90%, 92%, 86%, and 86% identities with those of the human, bovine, house mouse, and Norway rat, respectively. Northern blot analyses detected two isoforms named pLHIF-1alpha and pSHIF-1alpha. The HIF-1alpha mRNA was highly expressed in the brain and kidney, and much less in the heart, lung, liver, muscle, and spleen, which was quite different from the expression pattern of mouse mRNA. Meanwhile, a new variant of plateau pika HIF-1alpha mRNA was identified by RT-PCR and characterized. The deduced protein, composed of 536 amino acids, lacks a part of the oxygen-dependent degradation domain (ODD), both transactivation domains (TADs), and the nuclear localization signal motif (NLS). Our results suggest that HIF-1alpha may play an important role in the pika's adaptation to hypoxia, especially in brain and kidney, and pika HIF-1alpha function pattern may be different from that of mouse HIF-1alpha. Further-more, for the high ratio of HIF-1alpha homology among the animals, the HIF-1alpha gene may be a good phylogenetic performer in recovering the true phylogenetic relationships among taxa. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Grazing intensity may alter the soil respiration rate in grassland ecosystems. The objectives of our study were to (1) determine the influence of grazing intensity on temporal variations in soil respiration of an alpine meadow on the northeastern Tibetan Plateau; and (2) characterise, the temperature response of soil respiration under different grazing intensities. Diurnal and seasonal soil respiration rates were measured for two alpine meadow sites with different grazing intensities. The light grazing (LG) meadow site had a grazing intensity of 2.55 sheep ha(-1), while the grazing intensity of the heavy grazing (HG) meadow site, 5.35 sheep ha(-1), was approximately twice that of the LG site. Soil respiration measurements - showed that CO2 efflux was almost twice as great at the LG site as at the HG site during the growing season, but the diurnal and seasonal patterns of soil respiration rate were similar for the two sites. Both exhibited the highest annual soil respiration rate in mid-August and the lowest in January. Soil respiration rate was highly dependent on soil temperature. The Q(10) value for annual soil respiration was lower for the HG site (2.75) than for the LG site (3.22). Estimates of net ecosystem CO2 exchange from monthly measurements of biomass and soil respiration revealed that during the period from May 1998 to April 1999, the LG site released 2040 g CO2 m(-2) y(-1) to the atmosphere, which was about one third more than the 1530g CO2 m(-2) y(-1) released at the HG site. The results suggest that (1) grazing intensity alters not only soil respiration rate, but also the temperature dependence of soil CO2 efflux; and (2) soil temperature is the major environmental factor controlling the temporal variation of soil respiration rate in the alpine meadow ecosystem. (C) 2003 Elsevier Ltd. All fights reserved.
Resumo:
[1] The alpine meadow ecosystem on the Qinghai-Tibetan Plateau may play a significant role in the regional carbon cycle. To assess the CO2 flux and its relationship to environmental controls in the ecosystem, eddy covariance of CO2, H2O, and energy fluxes was measured with an open-path system in an alpine meadow on the plateau at an elevation of 3,250 m. Net ecosystem CO2 influx (Fc) averaged 8.8 g m(-2) day(-1) during the period from August 9 to 31, 2001, with a maximum of 15.9 g m(-2) day(-1) and a minimum of 2.3 g m(-2) day(-1). Daytime Fc averaged 16.7 g m(-2) day(-1) and ranged from 10.4 g m(-2) day(-1) to 21.7 g m(-2) day(-1) during the study period. For the same photosynthetic photon flux density (PPFD), gross CO2 uptake (Gc) was significantly higher on cloudy days than on clear days. However, mean daily Gc was higher on clear days than on cloudy days. With high PPFD, Fc decreased as air temperature increased from 10degreesC to 23degreesC. The greater the difference between daytime and nighttime air temperatures, the more the sink was strengthened. Daytime average water use efficiency of the ecosystem (WUEe) was 8.7 mg (CO2)(g H2O)(-1); WUEe values ranged from 5.8 to 15.3 mg (CO2)(g H2O)(-1). WUEe increased with the decrease in vapor pressure deficit. Daily albedo averaged 0.20, ranging from 0.19 to 0.22 during the study period, and was negatively correlated with daily Fc. Our measurements provided some of the first evidence on CO2 exchange for a temperate alpine meadow ecosystem on the Qinghai-Tibetan Plateau, which is necessary for assessing the carbon budget and carbon cycle processes for temperate grassland ecosystems.
Resumo:
Effects of grazing intensity on leaf photosynthetic rate (Pn), specific leaf area (SLA), individual tiller density, sward leaf area index (LAI), harvested herbage DM, and species composition in grass mixtures (Clinelymus nutans + Bromus inermis, Elymus nutans + Bromus inermis + Agropyron cristatum and Elymus nutans + Clinelymus nutans + Bromus inermis + Agropyron cristatum) were studied in the alpine region of the Tibetan Plateau. Four grazing intensities (GI), expressed as feed utilisation rates (UR) by Tibetan lambs were imposed as follows: (1) no grazing; (2) 30% UR as light grazing; (3) 50% UR as medium grazing; and (4) 70% UR as high grazing. Leaf Pn rate and tiller density of grasses increased (P < 0.05), while sward LAI and harvested herbage DM declined (P < 0.05) with the increments of GI, although no effect of GI on SLA was observed. With increasing GI, Elymus nutans and Clinelymus nutans increased but Bromus inermis and Agropyron cristatum decreased in swards, LAI and DM contribution. Whether being grazed or not, Elymus nutans + Clinelymus nutans + Bromus inermis + Agropyron cristatum was the most productive sward among the grass mixtures. Thus, two well-performed grass species (Elymus nutans and Clinelymus nutans) and the most productive mixture of four species should be investigated further as the new feed resources in the alpine grazing system of the Tibetan Plateau. Light grazing intensity of 30% UR was recommended for these grass mixtures when swards, LAI, herbage DM harvested, and species compatibility were taken into account.
Resumo:
1. Plateau zokors, Myospalax fontanierii, are the only subterranean herbivores on the Tibetan plateau of China. Although the population biology of plateau zokors has been studied for many years, the interactions between zokors and plants, especially for the maintenance and structure of ecological communities, have been poorly recognized. In the past, plateau zokors have been traditionally viewed as pests, competitors with cattle, and agents of soil erosion, thus eradication programmes have been carried out by local governments and farmers. Zokors are also widely and heavily exploited for their use in traditional Chinese medicine.2. Like other fossorial animals, such as pocket gophers Geomys spp. and prairie dogs Cynomys spp. in similar ecosystems, zokors may act to increase local environmental heterogeneity at the landscape level, aid in the formation, aeration and mixing of soil, and enhance infiltration of water into the soil thus curtailing erosion. The changes that zokors cause in the physical environment, vegetation and soil clearly affect the herbivore food web. Equally, plateau zokors also provide a significant food source for many avian and mammalian predators on the plateau. Zokor control leading to depletion of prey and secondary poisoning may therefore present problems for populations of numerous other animals.3. We highlight the important role plateau zokors play in the Tibetan plateau ecosystem. Plateau zokors should be managed in concert with other comprehensive rangeland treatments to ensure the ecological equilibrium and preservation of native biodiversity, as well as the long-term sustainable use of pastureland by domestic livestock.
Resumo:
Effects of plateau zokors (Myospalax fontanierii) on seasonal above- and belowground plant biomass, plant species diversity, and soil moisture and organic matter were examined at an alpine meadow site in Qinghai Province, People's Republic of China. Above- and belowground biomass increased significantly in areas where zokors were removed or burrow systems were abandoned for 5 years compared with areas that zokors had occupied for >10 years. Biomass of monocotyledons was reduced greatly, but biomass of nonpalatable dicotyledons increased significantly, in occupied areas. Diversity of dicotyledons, monocotyledons, and total plants in unoccupied areas was significantly greater than in occupied or abandoned areas. Vegetation cover and height in occupied areas were significantly less than in unoccupied and abandoned areas. No consistent effect by zokors on soil moisture and organic matter was observed.
Resumo:
All taxa endemic to the Qinghai-Tibet Plateau are hypothesized to have originated in situ or from immediately adjacent areas because of the relatively recent formation of the plateau since the Pliocene, followed by the large-scaled biota extinction and recession caused by the Quaternary ice sheet. However, identification of specific progenitors remains difficult for some endemics, especially some endemic genera. Nannoglottis, with about eight species endemic to this region, is one such genus. Past taxonomic treatments have suggested its relationships with four different tribes of Asteraceae. We intend to identify the closest relatives of Nannoglottis by evaluating the level of monophyly, tribal delimitation, and systematic position of the genus by using molecular data from ndhF gene, trnL-F, and ITS region sequences. We find that all sampled species of Nannoglottis are a well-defined monophyly. This supports all recent taxonomic treatments of Nannoglottis, in which all sampled species were placed in one broadly re-circumscribed genus. Nannoglottis is most closely related to the Astereae, but stands as an isolated genus as the first diverging lineage of the tribe, without close relatives. A tentative relationship was suggested for Nannoglottis and the next lineage of the tribe was based on the ITS topology, the "basal group," which consists of seven genera from the Southern Hemisphere. Such a relationship is supported by some commonly shared plesiomorphic morphological characters. Despite the very early divergence of Nannoglottis in the Astereae, the tribe must be regarded to have its origin in Southern Hemisphere rather than in Asia, because based on all morphological, molecular, biogeographical, and fossil data, the Asteraceae and its major lineages (tribes) are supposed to have originated in the former area. Long-distance dispersal using Southeast Asia as a steppingstone from Southern Hemisphere to the Qinghai-Tibet Plateau is the most likely explanation for this unusual biogeographic link of Nannoglottis. The 23-32-million-year divergence time between Nannoglottis and the other Astereae estimated by DNA sequences predated the formation of the plateau. This estimation is further favored by the fossil record of the Asteraceae and the possible time of origin of the Astereae. Nannoglottis seems to have reached the Qinghai-Tibet area in the Oligocene-Eocene and then re-diversified with the uplift of the plateau. The molecular infragenetic phylogeny of the genus identifies two distinct clades, which reject the earlier infrageneric classification based on the arrangement of the involucral bracts and the length of the ligules, but agree well with the habits and ecological preferences of its current species. The "alpine shrub" vs. "coniferous forest" divergence within Nannoglottis was estimated at about 3.4 million years ago when the plateau began its first large-scale uplifting and the coniferous vegetation began to appear. Most of the current species at the "coniferous forest" clade of the genus are estimated to have originated from 1.02 to 1.94 million years ago, when the second and third uprisings of the plateau occurred, the climate oscillated and the habitats were strongly changed. The assumed evolution, speciation diversity, and radiation of Nannoglottis based on molecular phylogeny and divergence times agree well with the known geological and paleobotanical histories of the Qinghai-Tibet Plateau. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
Benefits and costs of dispersal and philopatry of the social plateau pika (Ochotona curzoniae) were studied on the Tibetan plateau for 3 years. Although short-lived, plateau pikas live in cohesive family groups that occupy burrow systems in sedge meadow habitat Most (57.8%) plateau pikas were philopatric, and dispersal movements were extremely restricted. No juvenile females or adult pikas moved more than two family ranges between years; the greatest observed dispersal distances were by two juvenile males that moved five family ranges from the family of their birth. Traversing unfamiliar habitat was not a cost of pika dispersal because most dispersers settled in families that they could easily visit before dispersal. Dispersal movements appeared to result in equalization of density among pika families, an expected result if competition for environmental resources influenced dispersal. Males did not disperse to gain advantages in competition for mates, as evidenced by their moving to families with significantly fewer females. Females, however, moved to families with significantly more males. Males provide abundant paternal care, and significantly more offspring per female survived to become adults from families with more adult males per adult female. Evidence concerning the influence of inbreeding avoidance on natal dispersal was indirect. Some males exhibited natal philopatry; thus some families had opportunity for close inbreeding. Males and females that dispersed had no opposite-sex relatives in their new families. Philopatric pikas may have benefited by remaining in families that exhibited low local densities, and philopatric females might have benefited from social cooperation with relatives.