983 resultados para Plants, Nutrition of
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Information on improved cultivars of fall panicum and cultural practices concerning its cultivation is scarce in Brazil. So, the objectives of this research work were to evaluate root length and the mineral nutrition of fall panicum plants as influenced by liming in an acidic soil. The experiment was conducted in vases containing 13 dm3 of soil under greenhouse conditions up to 44 days after seedling emergence. The experimental units were distributed inside the green house according to a completely random design in a 2 X 4 factorial scheme, that is, two fall panicum cultivars (‘AL Mogi’ and ‘AL Tibagi’) and four doses (0.0, 1.67, 2.91, and 4.15 t ha-1 ). The experimental units were replicated 4 times. ‘AL Tibagi’ plants root system showed more tolerance to soil conditions of low base saturation. That cultivar also absorbed more efficiently P, N, Ca, Mg, and K from the acidic soil. Liming brought about increments of P, N, Ca, Mg, and S absorption by the fall panicum cultivars.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O objetivo deste trabalho foi quantificar o aporte e a remoção de nutrientes em sistemas de cultivo de cana‑de‑açúcar irrigados, ou não, com efluente de estação de tratamento de esgoto (EETE), com e sem adição de fosfogesso, bem como avaliar os efeitos desses sistemas de cultivo no estado nutricional das plantas. Foram avaliados tratamentos sem irrigação e com irrigação a 100 e 150% da necessidade hídrica da cultura. Os tratamentos com fosfogesso foram aplicados em área de terceiro corte, irrigada com EETE desde o plantio. As avaliações foram realizadas em duas safras. Os tratamentos não afetaram os rendimentos de colmos. O tratamento com EETE e fosfogesso apresentou efeito sinérgico sobre o conteúdo de nitrogênio e de enxofre nas plantas. O EETE beneficiou a nutrição das plantas quanto ao fósforo, mas não causou melhorias na nutrição com potássio e enxofre. A nutrição com ferro, zinco e manganês não foi influenciada pelo aporte desses micronutrientes pelo EETE. O fósforo e o nitrogênio aportados na irrigação com EETE devem ser considerados na recomendação de adubação. Porém, potássio, enxofre, ferro, zinco e manganês do efluente não são fontes eficientes desses nutrientes para as plantas.
Resumo:
Brazil is one of the main centers of origin of pineapple species presenting the largest genetic variation of the Ananas genus. Embrapa Cassava and Fruits is a Brazilian Agricultural Research Corporation and has an ex-situ collection of 678 accessions of the Ananas genus and some other Bromeliaceae. The use of ornamental pineapple has increased in the last years demanding new varieties, mainly for the external market, due to the originality and colors of its tiny fruits. The main aim of the present study was describing accessions from the pineapple gene bank in order to quantify their genetic variation and identify possible progenitors to be used in breeding programs of ornamental pineapples. Eighty-nine accessions of Ananas comosus var. comosus, A. comosus var. bracteatus (Lindl.) Coppens et Leal, A. comosus var. ananassoides (Baker) Coppens et Leal, A. comosus var. erectifolius (L. B. Smith) Coppens et Leal, A. comosus var. parguasensis (Camargo et L. B. Smith) Coppens et Leal and A. macrodontes Morren were evaluated with 25 morphological descriptors. According to the results, the evaluated accessions were separated into the following categories: landscape plants, cut flower, potted plants, minifruits, foliage and hedge. The genetic distance among accessions was determined using the combined qualitative and quantitative data by the Gower algorithm. The pre-selected accessions presented genetic variation and ornamental potential for different uses. The multicategory analysis formed seven clusters through a classification method based on the average Euclidean distance between all accessions using the cut-point of genetic dissimilarity (D dg = 0.35). The genotypes A. comosus var. erectifolius were selected to be used as landscape plants, cut flower, minifruits and potted plants. Accessions of A. comosus var. bracteatus and A. macrodontes were selected as landscape plants and hedge. The highest variation was observed in A. comosus var. ananassoides genotypes, which presented high potential for use as cut flowers.
Resumo:
Brazil holds the second largest population of domestic dogs in the world, with 33 million dogs, only behind the United States. The annual consumption of dog food in the country is 1.75 million tons, corresponding to the World's sixth in trade turnover. Dog food is supposed to be a complete and balanced diet, formulated with high quality ingredients. All nutrients and minerals required for an adequate nutrition of dogs are added to the formulation to ensure longevity and welfare. In this context, the present study aimed at assessing the chemical composition of dry dog foods commercialized in Brazil. Thirty-four samples were acquired in the local market of Piracicaba and analyzed by instrumental neutron activation analysis (INAA) to determine the elements As, Br, Ca, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Se, U, and Zn. In general, the concentrations of Ca, Fe, K, Na, and Zn complied with the values required by the Association of American Feed Control Officials (AAFCO). To evaluate the safety of dog food commercialized in Brazil, further investigation is necessary to better understand the presence of toxic elements found in this study, i.e. Sb and U. INAA was useful for the screening analysis of different types and brands of dry dog foods for the determination of both essential and toxic elements.
Resumo:
Small molecules affecting biological processes in plants are widely used in agricultural practice as herbicides or plant growth regulators and in basic plant sciences as probes to study the physiology of plants. Most of the compounds were identified in large screens by the agrochemical industry, as phytoactive natural products and more recently, novel phytoactive compounds originated from academic research by chemical screens performed to induce specific phenotypes of interest. The aim of the present PhD thesis is to evaluate different approaches used for the identification of the primary mode of action (MoA) of a phytoactive compound. Based on the methodologies used for MoA identification, three approaches are discerned: a phenotyping approach, an approach based on a genetic screen and a biochemical screening approach.rnFour scientific publications resulting from my work are presented as examples of how a phenotyping approach can successfully be applied to describe the plant MoA of different compounds in detail.rnI. A subgroup of cyanoacrylates has been discovered as plant growth inhibitors. A set of bioassays indicated a specific effect on cell division. Cytological investigations of the cell division process in plant cell cultures, studies of microtubule assembly with green fluorescent protein marker lines in vivo and cross resistant studies with Eleusine indica plants harbouring a mutation in alpha-tubulin, led to the description of alpha-tubulin as a target site of cyanoacrylates (Tresch et al., 2005).rnII. The MoA of the herbicide flamprop-m-methyl was not known so far. The studies described in Tresch et al. (2008) indicate a primary effect on cell division. Detailed studies unravelled a specific effect on mitotic microtubule figures, causing a block in cell division. In contrast to other inhibitors of microtubule rearrangement such as dinitroanilines, flamprop-m-methyl did not influence microtubule assembly in vitro. An influence of flamprop-m-methyl on a target within the cytoskeleton signalling network could be proposed (Tresch et al., 2008).rnIII. The herbicide endothall is a protein phosphatase inhibitor structurally related to the natural product cantharidin. Bioassay studies indicated a dominant effect on dark-growing cells that was unrelated to effects observed in the light. Cytological characterisation of the microtubule cytoskeleton in corn tissue and heterotrophic tobacco cells showed a specific effect of endothall on mitotic spindle formation and ultrastructure of the nucleus in combination with a decrease of the proliferation index. The observed effects are similar to those of other protein phosphatase inhibitors such as cantharidin and the structurally different okadaic acid. Additionally, the observed effects show similarities to knock-out lines of the TON1 pathway, a protein phosphatase-regulated signalling pathway. The data presented in Tresch et al. (2011) associate endothall’s known in vitro inhibition of protein phosphatases with in vivo-effects and suggest an interaction between endothall and the TON1 pathway.rnIV. Mefluidide as a plant growth regulator induces growth retardation and a specific phenotype indicating an inhibition of fatty acid biosynthesis. A test of the cuticle functionality suggested a defect in the biosynthesis of very-long-chain fatty acids (VLCFA) or waxes. Metabolic profiling studies showed similarities with different groups of VLCFA synthesis inhibitors. Detailed analyses of VLCFA composition in tissues of duckweed (Lemna paucicostata) indicated a specific inhibition of the known herbicide target 3 ketoacyl-CoA synthase (KCS). Inhibitor studies using a yeast expression system established for plant KCS proteins verified the potency of mefluidide as an inhibitor of plant KCS enzymes. It could be shown that the strength of inhibition varied for different KCS homologues. The Arabidopsis Cer6 protein, which induces a plant growth phenotype similar to mefluidide when knocked out, was one of the most sensitive KCS enzymes (Tresch et al., 2012).rnThe findings of my own work were combined with other publications reporting a successful identification of the MoA and primary target proteins of different compounds or compound classes.rnA revised three-tier approach for the MoA identification of phytoactive compounds is proposed. The approach consists of a 1st level aiming to address compound stability, uniformity of effects in different species, general cytotoxicity and the effect on common processes like transcription and translation. Based on these findings advanced studies can be defined to start the 2nd level of MoA characterisation, either with further phenotypic characterisation, starting a genetic screen or establishing a biochemical screen. At the 3rd level, enzyme assays or protein affinity studies should show the activity of the compound on the hypothesized target and should associate the in vitro effects with the in vivo profile of the compound.
Resumo:
Switchgrass (Panicum virgatum L.) is a perennial grass holding great promise as a biofuel resource. While Michigan’s Upper Peninsula has an appropriate land base and climatic conditions, there is little research exploring the possibilities of switchgrass production. The overall objectives of this research were to investigate switchgrass establishment in the northern edge of its distribution through: investigating the effects of competition on the germination and establishment of switchgrass through the developmental and competitive characteristics of Cave-in-Rock switchgrass and large crabgrass (Digitaria sanguinalis L.) in Michigan’s Upper Peninsula; and, determining the optimum planting depths and timing for switchgrass in Michigan’s Upper Peninsula. For the competition study, a randomized complete block design was installed June 2009 at two locations in Michigan’s Upper Peninsula. Four treatments (0, 1, 4, and 8 plants/m2) of crabgrass were planted with one switchgrass plant. There was a significant difference between switchgrass biomass produced in year one, as a function of crabgrass weed pressure. There was no significant difference between the switchgrass biomass produced in year two versus previous crabgrass weed pressure. There is a significant difference between switchgrass biomass produced in year one and two. For the depth and timing study, a completely randomized design was installed at two locations in Michigan’s Upper Peninsula on seven planting dates (three fall 2009, and four spring 2010); 25 seeds were planted 2 cm apart along 0.5 m rows at depths of: 0.6 cm, 1.3 cm, and 1.9 cm. Emergence and biomass yields were compared by planting date, and depths. A greenhouse seeding experiment was established using the same planting depths and parameters as the field study. The number of seedlings was tallied daily for 30 days. There was a significant difference in survivorship between the fall and spring planting dates, with the spring being more successful. Of the four spring planting dates, there was a significant difference between May and June in emergence and biomass yield. June planting dates had the most percent emergence and total survivorship. There is no significant difference between planting switchgrass at depths of 0.6 cm, 1.3 cm, and 1.9 cm. In conclusion, switchgrass showed no signs of a legacy effect of competition from year one, on biomass production. Overall, an antagonistic effect on switchgrass biomass yield during the establishment period has been observed as a result of increasing competing weed pressure. When planting switchgrass in Michigan’s Upper Peninsula, it should be done in the spring, within the first two weeks of June, at any depth ranging from 0.6 cm to 1.9 cm.
Resumo:
Suboptimal dietary zinc (Zn(2+)) intake is increasingly appreciated as an important public health issue. Zn(2+) is an essential mineral, and infants are particularly vulnerable to Zn(2+) deficiency, as they require large amounts of Zn(2+) for their normal growth and development. Although term infants are born with an important hepatic Zn(2+) storage, adequate Zn(2+) nutrition of infants mostly depends on breast milk or formula feeding, which contains an adequate amount of Zn(2+) to meet the infants' requirements. An exclusively breast-fed 6 months old infant suffering from Zn(2+) deficiency caused by an autosomal dominant negative G87R mutation in the Slc30a2 gene (encoding for the zinc transporter 2 (ZnT-2)) in the mother is reported. More than 20 zinc transporters characterized up to date, classified into two families (Slc30a/ZnT and Slc39a/Zip), reflect the complexity and importance of maintaining cellular Zn(2+) homeostasis and dynamics. The role of ZnTs is to reduce intracellular Zn(2+) by transporting it from the cytoplasm into various intracellular organelles and by moving Zn(2+) into extracellular space. Zips increase intracellular Zn(2+) by transporting it in the opposite direction. Thus the coordinated action of both is essential for the maintenance of Zn(2+) homeostasis in the cytoplasm, and accumulating evidence suggests that this is also true for the secretory pathway of growth hormone.
Resumo:
The effect of long-term exposure to elevated pCO2 concentrations on sulfate and nitrate assimilation was studied under field conditions using leaves from Quercus ilex and Quercus pubescens trees growing with ambient or elevated CO2 concentrations in the vicinity of three natural CO2 springs, Bossoleto, Laiatico and Sulfatara, in Tuscany, Italy. The activity of the key enzymes of sulfate assimilation, adenosine 5′-phosphosulfate reductase (APR) and nitrate assimilation, nitrate reductase (NR), were measured together with the levels of acid soluble thiols, and soluble non-proteinogenic nitrogen compounds. Whereas NR activity remained unaffected in Q. ilex or increased Q. pubescence, APR activity decreased in the area of CO2 springs. The latter changes were often accompanied by increased GSH concentrations, apparently synthesized from H2S and SO2 present in the gas mixture emitted from the CO2 springs. Thus, the diminished APR activity in leaves of Q. ilex and Q. pubescence from spring areas can best be explained by the exposure to gaseous sulfur compounds. Although the concentrations of H2S and SO2 in the gas mixture emitted from the vents at the CO2 springs were low at the Bossoleto and Laiatico spring, these sulfur gases pose physiological effects, which may override consequences of elevated pCO2.
Resumo:
Plant defences vary in space and time, which may translate into specific herbivore-foraging patterns and feeding niche differentiation. To date, little is known about the effect of secondary metabolite patterning on within-plant herbivore foraging. We investigated how variation in the major maize secondary metabolites, 1,4-benzoxazin-3-one derivatives (BXDs), affects the foraging behaviour of two leaf-chewing herbivores. BXD levels varied substantially within plants. Older leaves had higher levels of constitutive BXDs while younger leaves were consistently more inducible. These differences were observed independently of plant age, even though the concentrations of most BXDs declined markedly in older plants. Larvae of the well-adapted maize pest Spodoptera frugiperda preferred and grew better on young inducible leaves irrespective of plant age, while larvae of the generalist Spodoptera littoralis preferred and tended to grow better on old leaves. In BXD-free mutants, the differences in herbivore weight gain between old and young leaves were absent for both species, and leaf preferences of S. frugiperda were attenuated. In contrast, S. littoralis foraging patterns were not affected. In summary, our study shows that plant secondary metabolites differentially affect performance and foraging of adapted and non-adapted herbivores and thereby likely contribute to feeding niche differentiation
Resumo:
The impact of heat stress on the functioning of the photosynthetic apparatus was examined in pea (Pisum sativum L.) plants grown at control (25 °C; 25 °C-plants) or moderately elevated temperature (35 °C; 35 °C-plants). In both types of plants net photosynthesis (Pn) decreased with increasing leaf temperature (LT) and was more than 80% reduced at 45 °C as compared to 25 °C. In the 25 °C-plants, LTs higher than 40 °C could result in a complete suppression of Pn. Short-term acclimation to heat stress did not alter the temperature response of Pn. Chlorophyll a fluorescence measurements revealed that photosynthetic electron transport (PET) started to decrease when LT increased above 35 °C and that growth at 35 °C improved the thermal stability of the thylakoid membranes. In the 25 °C-plants, but not in the 35 °C-plants, the maximum quantum yield of the photosystem II primary photochemistry, as judged by measuring the Fv/Fm ratio, decreased significantly at LTs higher than 38 °C. A post-illumination heat-induced reduction of the plastoquinone pool was observed in the 25 °C-plants, but not in the 35 °C-plants. Inhibition of Pn by heat stress correlated with a reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Western-blot analysis of Rubisco activase showed that heat stress resulted in a redistribution of activase polypeptides from the soluble to the insoluble fraction of extracts. Heat-dependent inhibition of Pn and PET could be reduced by increasing the intercellular CO2 concentration, but much more effectively so in the 35 °C-plants than in the 25 °C-plants. The 35 °C-plants recovered more efficiently from heat-dependent inhibition of Pn than the 25 °C-plants. The results show that growth at moderately high temperature hardly diminished inhibition of Pn by heat stress that originated from a reversible heat-dependent reduction of the Rubisco activation state. However, by improving the thermal stability of the thylakoid membranes it allowed the photosynthetic apparatus to preserve its functional potential at high LTs, thus minimizing the after-effects of heat stress.
Resumo:
Plant cell walls largely consist of matrix polysaccharides that are linked to cellulose microfibrils. Xyloglucan, the primary hemicellulose of the cell wall matrix, consists of a repeating glucose tetramer structure with xylose residues attached to the first three units ('XXXG'). In Arabidopsis thaliana, the core XXXG structure is further modified by enzymatic addition of galactose and fucose residues to the xylose side chains to produce XLXG, XXLG, XLLG and XLFG structures. GT14 is a putative glycosyltransferase in the GT47 gene family. Initial predictions of GT14's hydrophobic regions, based on its translated amino acid sequence, are almost identical to its Arabidopsis homolog MUR3, which is a xyloglucan galactosyltransferase targeted to the Golgi membrane. This suggests that, like MUR3, GT14 possesses a transmembrane domain and that it is targeted to the Golgi. The monosaccharide composition of leaves from T-DNA insertion knockouts of GT14 was analyzed by gas-liquid chromatography. The gt14 plants were found to have lower fucose and higher mannose contents than wild type plants. Analysis of cell wall and soluble fractions from gt14 and wild type plants revealed that most of the deficiency in fucose was accounted for in the cell wall, supporting the idea that GT14's target is xyloglucan. Finally, gt14 and wild type plants were transformed with GT14 for complementation and overexpression analysis. The majority of transformed plants did not show significant changes with regard to monosaccharide composition. This may be because the plants were in the T1 generation and, thus, hemizygous. Analysis of homozygous plants in the T2 generation may reveal noticeable changes. Further studies on the xyloglucan composition of gt14 plants are necessary to put the observed reduction in cell wall fucose into a meaningful context.
Resumo:
To prevent leaf senescence of young transplants or excised shoots during storage under dark and cold conditions, the cytokinin biosynthetic gene isopentenyl transferase (ipt) was placed under the control of a cold-inducible promoter cor15a from Arabidopsis thaliana and introduced into Petunia x hybrida 'Marco Polo Odyssey' and Dendranthema x grandiflorum (chrysanthemum) 'Iridon'. Transgenic cor15a-ipt petunia and chrysanthemum plants and excised leaves remained green and healthy during prolonged dark storage (4 weeks at 25 degrees C) after an initial exposure to a brief cold-induction period (4 degrees C for 72 h). However, cor15a-ipt chrysanthemum plants and excised leaves that were not exposed to a cold-induction period, senesced under the same dark storage conditions. Regardless of cold-induction treatment, leaves and plants of non-transformed plants senesced under prolonged dark storage. Analysis of ipt expression indicated a marked increase in gene expression in intact transgenic plants as well as in isolated transgenic leaves exposed to a short cold-induction treatment prior to dark storage. These changes correlated with elevated concentrations of cytokinins in transgenic leaves after cold treatment. Cor15a-ipt transgenic plants showed a normal phenotype when grown at 25 degrees C.