992 resultados para Planetary Rover
Resumo:
Our understanding of the ancient ocean-atmosphere system has focused on oceanic proxies. However, the study of terrestrial proxies is equally necessary to constrain our understanding of ancient climates and linkages between the terrestrial and oceanic carbon reservoirs. We have analyzed carbon-isotope ratios from fossil plant material through the Valanginian and Lower Hauterivian from a shallow-marine, ammonite-constrained succession in the Crimean Peninsula of the southern Ukraine in order to determine if the Upper Valanginian positive carbon-isotope excursion is expressed in the atmosphere. delta(13)C(plant) values fluctuate around -23% to -22% for the Valanginian-Hauterivian, except during the Upper Valanginian where delta(13)C(plant) values record a positive excursion to similar to-18%. Based upon ammonite biostratigraphy from Crimea, and in conjunction with a composite Tethyan marine delta(13)C(carb) curve, several conclusions can be drawn: (1) the delta(13)C(plant) record indicates that the atmospheric carbon reservoir was affected; (2) the defined ammonite correlations between Europe and Crimea are synchronous; and (3) a change in photosynthetic carbon-isotope fractionation, caused by a decrease in atmospheric PCO2, occurred during the Upper Valanginian Positive delta(13)C excursion. Our new data, combined with other paleoenvironmental and paleoclimatic information, indicate that the Upper Valanginian was a cool period (icehouse) and highlights that the Cretaceous period was interrupted by periods of cooling and was not an equable climate as previously thought. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Changes in the extent of glaciers and rates of glacier termini retreat in the eastern Terskey-Alatoo Range, the Tien Shan Mountains, Central Asia have been evaluated using the remote sensing techniques. Changes in the extent of 335 glaciers between the end of the Little Ice Age (LIA; mid-19th century), 1990 and 2003 have been estimated through the delineation of glacier outlines and the LIA moraine positions on the Landsat TM and ASTER imagery for 1990 and 2003 respectively. By 2003, the glacier surface area had decreased by 19% of the LIA value, which constitutes a 76 km(2) reduction in glacier surface area. Mapping of 109 glaciers using the 1965 1:25,000 maps revealed that glacier surface area decreased by 12.6% of the 1965 value between 1965 and 2003. Detailed mapping of 10 glaciers using historical maps and aerial photographs from the 1943-1977 period, has enabled glacier extent variations over the 20th century to be identified with a higher temporal resolution. Glacial retreat was slow in the early 20th century but increased considerably between 1943 and 1956 and then again after 1977. The post-1990 period has been marked by the most rapid glacier retreat since the end of the LIA. The observed changes in the extent of glaciers are in line with the observed climatic warming. The regional weather stations have revealed a strong climatic warming during the ablation season since the 1950s at a rate of 0.02-0.03 degrees Ca-1. At the higher elevations in the study area represented by the Tien Shan meteorological station, the summer warming was accompanied by negative anomalies in annual precipitation in the 1990s enhancing glacier retreat. However, trends in precipitation in the post-1997 period cannot be evaluated due to the change in observational practices at this station. Neither station in the study area exhibits significant long-term trends in precipitation. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Laboratory simulation of terrestrial meteorite weathering using the Bensour (LL6) ordinary chondrite
Resumo:
Laboratory dissolution experiments using the LL6 ordinary chondrite Bensour demonstrate that meteoritic minerals readily react with distilled water at low temperatures, liberating ions into solution and forming reaction products. Three experiments were performed, all for 68 days and at atmospheric fO(2) but using a range of water/rock ratios and different ternperatures. Experiments I and 2 were batch experiments and undertaken at room temperature, whereas in experiment 3, condensed boiling water was dripped onto meteorite subsamples within a Soxhlet extractor. Solutions from experiment 1 were chemically analyzed at the end of the experiment, whereas aliquots were extracted from experiments 2 and 3 for analysis at regular intervals. In all three experiments, a very significant proportion of the Na, Cl, and K within the Bensour subsamples entered solution, demonstrating that chlorapatite and feldspar were especially susceptible to dissolution. Concentrations of Mg, Al, Si, Ca, and Fe in solution were strongly affected by the precipitation of reaction products and Mg and Ca may also have been removed by sorption. Calculations predict saturation of experimental solutions with respect to Al hydroxides, Fe oxides, and Fe (oxy)hydroxides, which would have frequently been accompanied by hydrous aluminosilicates. Some reaction products were identified and include silica, a Mg-rich silicate, Fe oxides, and Fe (oxy)hydroxides. The implications of these results are that even very short periods of subaerial exposure of ordinary chondrites will lead to dissolution of primary minerals and crystallization of weathering products that are likely to include aluminosilicates and silicates, Mg-Ca carbonates, and sulfates in addition to the ubiquitous Fe oxides and (oxy)hydroxides.
Resumo:
Rapidly-flowing sectors of an ice sheet (ice streams) can play ail important role in abrupt climate change through tile delivery of icebergs and meltwater and tile Subsequent disruption of ocean thermohaline circulation (e.g., the North Atlantic's Heinrich events). Recently, several cores have been raised from the Arctic Ocean which document the existence of massive ice export events during tile Late Pleistocene and whose provenance has been linked to Source regions in the Canadian Arctic Archipelago. In this paper, satellite imagery is used to map glacial geomorphology in the vicinity of Victoria Island, Banks Island and Prince of Wales Island (Canadian Arctic) in order to reconstruct ice flow patterns in the highly complex glacial landscape. A total of 88 discrete flow-sets are mapped and of these, 13 exhibit the characteristic geomorphology of palaeo-ice streams (i.e., parallel patterns of large, highly elongated mega-scale glacial lineations forming a convergent flow pattern with abrupt lateral margins). Previous studies by other workers and cross-cutting relationships indicate that the majority of these ice streams are relatively young and operated during or immediately prior to deglaciation. Our new mapping, however, documents a large (> 700 km long; 110 km wide) and relatively old ice stream imprint centred in M'Clintock Channel and converging into Viscount Melville Sound. A trough mouth fan located on the continental shelf Suggests that it extended along M'Clure Strait and was grounded at tile shelf edge. The location of the M'Clure Strait Ice Stream exactly matches the Source area of 4 (possibly 5) major ice export events recorded in core PS 1230 raised from Fram Strait, the major ice exit for the Arctic Ocean. These ice export events occur at similar to 12.9, similar to 15.6, similar to 22 and 29.8 ka (C-14 yr BP) and we argue that they record vigorous episodes of activity of the M'Clure Strait Ice Stream. The timing of these events is remarkably similar to the North Atlantic's Heinrich events and we take this as evidence that the M'Clure Strait Ice Stream was also activated around the same time. This may hold important implications for tile cause of the North Atlantic's Heinrich events and hints at tile possibility of a pall-ice sheet response. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
New data show that island arc rocks have (Pb-210/Ra-226)(o) ratios which range from as low as 0.24 up to 2.88. In contrast, (Ra-22S/Th-232) appears always within error of I suggesting that the large Ra-226-excesses observed in arc rocks were generated more than 30 years ago. This places a maximum estimate on melt ascent velocities of around 4000 m/year and provides further confidence that the Ra-226 excesses reflect deep (source) processes rather than shallow level alteration or seawater contamination. Conversely, partial melting must have occurred more than 30 years prior to eruption. The Pb-210 deficits are most readily explained by protracted magma degassing. Using published numerical models, the data suggest that degassing occurred continuously for periods up to several decades just prior to eruption but no link with eruption periodicity was found. Longer periods are required if degassing is discontinuous, less than 100% efficient or if magma is recharged or stored after degassing. The long durations suggest much of this degassing occurs at depth with implications for the formation of hydrothermal and copper-porphyry systems. A suite of lavas erupted in 1985-1986 from Sangeang Api volcano in the Sunda arc are characterised by deficits of Pb-210 relative to Ra-226 from which 6-8 years of continuous Rn-222 degassing would be inferred from recent numerical models. These data also form a linear (Pb-210)/Pb-(Ra-226)/Pb array which might be interpreted as a 71-year isochron. However, the array passes through the origin suggesting displacement downwards from the equiline in response to degassing and so the slope of the array is inferred not to have any age significance. Simple modelling shows that the range of (Ra-226)/Pb ratios requires thousands of years to develop consistent with differentiation occurring in response to cooling at the base of the crust. Thus, degassing post-dated, and was not responsible for magma differentiation. The formation, migration and extraction of gas bubbles must be extremely efficient in mafic magma whereas the higher viscosity of more siliceous magmas retards the process and can lead to Pb-210 excesses. A possible negative correlation between (Pb-210/Ra-226)(o) and SO2 emission rate requires further testing but may have implications for future eruptions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper describes a novel numerical algorithm for simulating the evolution of fine-scale conservative fields in layer-wise two-dimensional flows, the most important examples of which are the earth's atmosphere and oceans. the algorithm combines two radically different algorithms, one Lagrangian and the other Eulerian, to achieve an unexpected gain in computational efficiency. The algorithm is demonstrated for multi-layer quasi-geostrophic flow, and results are presented for a simulation of a tilted stratospheric polar vortex and of nearly-inviscid quasi-geostrophic turbulence. the turbulence results contradict previous arguments and simulation results that have suggested an ultimate two-dimensional, vertically-coherent character of the flow. Ongoing extensions of the algorithm to the generally ageostrophic flows characteristic of planetary fluid dynamics are outlined.
Resumo:
Data from the MIPAS instrument on Envisat, supplemented by meteorological analyses from ECMWF and the Met Office, are used to study the meteorological and trace-gas evolution of the stratosphere in the southern hemisphere during winter and spring 2003. A pole-centred approach is used to interpret the data in the physically meaningful context of the evolving stratospheric polar vortex. The following salient dynamical and transport features are documented and analysed: the merger of anticyclones in the stratosphere; the development of an intense, quasi-stationary anticyclone in spring; the associated top-down breakdown of the polar vortex; the systematic descent of air into the polar vortex; and the formation of a three-dimensional structure of a tracer filament on a planetary scale. The paper confirms and extends existing paradigms of the southern hemisphere vortex evolution. The quality of the MIPAS observations is seen to be generally good. though the water vapour retrievals are unrealistic above 10 hPa in the high-latitude winter.
Resumo:
This paper presents an overview of the meteorology and planetary boundary layer structure observed during the NAMBLEX field campaign to aid interpretation of the chemical and aerosol measurements. The campaign has been separated into five periods corresponding to the prevailing synoptic condition. Comparisons between meteorological measurements ( UHF wind profiler, Doppler sodar, sonic aneometers mounted on a tower at varying heights and a standard anemometer) and the ECMWF analysis at 10 m and 1100 m identified days when the internal boundary layer was decoupled from the synoptic flow aloft. Generally the agreement was remarkably good apart from during period one and on a few days during period four when the diurnal swing in wind direction implies a sea/land breeze circulation near the surface. During these periods the origin of air sampled at Mace Head would not be accurately represented by back trajectories following the winds resolved in ECMWF analyses. The wind profiler observations give a detailed record of boundary layer structure including an indication of its depth, average wind speed and direction. Turbulence statistics have been used to assess the height to which the developing internal boundary layer, caused by the increased surface drag at the coast, reaches the sampling location under a wide range of marine conditions. Sampling conducted below 10 m will be impacted by emission sources at the shoreline in all wind directions and tidal conditions, whereas sampling above 15 m is unlikely to be affected in any of the wind directions and tidal heights sampled during the experiment.
Resumo:
Volcanic lightning, perhaps the most spectacular consequence of the electrification of volcanic plumes, has been implicated in the origin of life on Earth, and may also exist in other planetary atmospheres. Recent years have seen volcanic lightning detection used as part of a portfolio of developing techniques to monitor volcanic eruptions. Remote sensing measurement techniques have been used to monitor volcanic lightning, but surface observations of the atmospheric electric Potential Gradient (PG) and the charge carried on volcanic ash also show that many volcanic plumes, whilst not sufficiently electrified to produce lightning, have detectable electrification exceeding that of their surrounding environment. Electrification has only been observed associated with ash-rich explosive plumes, but there is little evidence that the composition of the ash is critical to its occurrence. Different conceptual theories for charge generation and separation in volcanic plumes have been developed to explain the disparate observations obtained, but the ash fragmentation mechanism appears to be a key parameter. It is unclear which mechanisms or combinations of electrification mechanisms dominate in different circumstances. Electrostatic forces play an important role in modulating the dry fallout of ash from a volcanic plume. Beyond the local electrification of plumes, the higher stratospheric particle concentrations following a large explosive eruption may affect the global atmospheric electrical circuit. It is possible that this might present another, if minor, way by which large volcanic eruptions affect global climate. The direct hazard of volcanic lightning to communities is generally low compared to other aspects of volcanic activity.
Resumo:
There is widely believed to be a link between stratospheric flow variability and stationary, persistent “blocking” weather systems, but the precise nature of this link has proved elusive. Using data from the ERA-40 Reanalysis and an atmospheric general circulation model (GCM) with a well-resolved stratosphere (HadGAM), it is shown that there are in fact several different highly significant associations, with blocking in different regions being related to different patterns of stratospheric variability. This is true in both hemispheres and in both data sets. The associations in HadGAM are shown to be very similar to those in ERA-40, although the model has a tendency to underestimate both European blocking and the wave number 2 stratospheric variability to which this is related. Although the focus is on stratospheric variability in general, several of the blocking links are seen to occur in association with the major stratospheric sudden warmings. In general, the direction of influence appears to be upward, as blocking anomalies are shown to modify the planetary stationary waves, leading to an upward propagation of wave activity into the stratosphere. However, significant correlations are also apparent with the zonal mean flow in the stratosphere leading the occurrence of blocking at high latitudes. Finally, the underestimation of blocking is an enduring problem in GCMs, and an example has recently been given in which improving the resolution of the stratosphere improved the representation of blocking. Here, however, another example is given, in which increasing the stratospheric resolution unfortunately does not lead to an improvement in blocking.
Resumo:
The spatial distribution of aerosol chemical composition and the evolution of the Organic Aerosol (OA) fraction is investigated based upon airborne measurements of aerosol chemical composition in the planetary boundary layer across Europe. Sub-micron aerosol chemical composition was measured using a compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS). A range of sampling conditions were evaluated, including relatively clean background conditions, polluted conditions in North-Western Europe and the near-field to far-field outflow from such conditions. Ammonium nitrate and OA were found to be the dominant chemical components of the sub-micron aerosol burden, with mass fractions ranging from 20--50% each. Ammonium nitrate was found to dominate in North-Western Europe during episodes of high pollution, reflecting the enhanced NO_x and ammonia sources in this region. OA was ubiquitous across Europe and concentrations generally exceeded sulphate by 30--160%. A factor analysis of the OA burden was performed in order to probe the evolution across this large range of spatial and temporal scales. Two separate Oxygenated Organic Aerosol (OOA) components were identified; one representing an aged-OOA, termed Low Volatility-OOA and another representing fresher-OOA, termed Semi Volatile-OOA on the basis of their mass spectral similarity to previous studies. The factors derived from different flights were not chemically the same but rather reflect the range of OA composition sampled during a particular flight. Significant chemical processing of the OA was observed downwind of major sources in North-Western Europe, with the LV-OOA component becoming increasingly dominant as the distance from source and photochemical processing increased. The measurements suggest that the aging of OA can be viewed as a continuum, with a progression from a less oxidised, semi-volatile component to a highly oxidised, less-volatile component. Substantial amounts of pollution were observed far downwind of continental Europe, with OA and ammonium nitrate being the major constituents of the sub-micron aerosol burden. Such anthropogenically perturbed air masses can significantly perturb regional climate far downwind of major source regions.
Resumo:
The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (∼1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10−7 S m−1 (for poorly conducting rocks) to 10−2 S m−1 (for clay or wet limestone), with a mean value of 3.2 S m−1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ∼10−14 S m−1 just above the surface to 10−7 S m−1 in the ionosphere at ∼80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences. Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ∼1 pA m−2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (∼+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ∼130 V m−1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit.
Resumo:
We use proper orthogonal decomposition (POD) to study a transient teleconnection event at the onset of the 2001 planet-encircling dust storm on Mars, in terms of empirical orthogonal functions (EOFs). There are several differences between this and previous studies of atmospheric events using EOFs. First, instead of using a single variable such as surface pressure or geopotential height on a given pressure surface, we use a dataset describing the evolution in time of global and fully three-dimensional atmospheric fields such as horizontal velocity and temperature. These fields are produced by assimilating Thermal Emission Spectrometer observations from NASA's Mars Global Surveyor spacecraft into a Mars general circulation model. We use total atmospheric energy (TE) as a physically meaningful quantity which weights the state variables. Second, instead of adopting the EOFs to define teleconnection patterns as planetary-scale correlations that explain a large portion of long time-scale variability, we use EOFs to understand transient processes due to localised heating perturbations that have implications for the atmospheric circulation over distant regions. The localised perturbation is given by anomalous heating due to the enhanced presence of dust around the northern edge of the Hellas Planitia basin on Mars. We show that the localised disturbance is seemingly restricted to a small number (a few tens) of EOFs. These can be classified as low-order, transitional, or high-order EOFs according to the TE amount they explain throughout the event. Despite the global character of the EOFs, they show the capability of accounting for the localised effects of the perturbation via the presence of specific centres of action. We finally discuss possible applications for the study of terrestrial phenomena with similar characteristics.