380 resultados para Pkc


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present thesis encompasses the two researches projects I conducted during my PhD program in Molecular Biology and Pathology. The common thread is represented by the analysis of the signaling pathways implicated in the pathophysiology of the two most aggressive Philadelphia-negative myeloproliferative neoplasms, namely, atypical chronic myeloid leukemia (aCML) and primary myelofibrosis (PMF). In the last decade, since the description of the JAK2V617F mutation in 2005, the field of the molecular characterization of Philadelphia-negative myeloproliferative neoplasms has experienced an astonishing implementation that led to the discovery of 16 new mutations involving signal transduction, epigenetic modifiers, cell cycle regulators. Nevertheless, their pathogenetic relevance and whether they could represent good “druggable” candidates have to be proved yet. In the first section I provide the first report of the signaling cascade down-stream the rare cytogenetic lesion t(8;9)(p22;p24)/PCM1-JAK2 associated with aCML, finding that it selectively activates the ERK1/2 signaling without affecting JAK/STAT phosphorylation. In the second part, I investigated the implication of the ε isoform of novel Protein kinase Cs (PKCs) in the pathophysiology of the aberrant megakaryocytopoiesis in PMF, concluding that the over-expression of PKCε detains a crucial relevance in the aberrant behavior of PMF megakaryocytes and its inhibition is capable to restore their normal differentiation and abrogate the anti-apoptotic signaling. Both results are discussed in the view of their therapeutic implications. In case PCM1/JAK2-related hematologic neoplasms, ERK-inhibitors rather than JAK-inhibitors (i.e. ruxolitinib) should be considered as a “tailored” drugs. In case of PMF, PKCε-inhibitors (i.e. εV1-2 peptide) configure as an appealing strategy to re-direct the megakaryocytic neoplastic clone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a genome-wide RNA-mediated interference screen for genes required in membrane traffic - including endocytic uptake, recycling from endosomes to the plasma membrane, and secretion - we identified 168 candidate endocytosis regulators and 100 candidate secretion regulators. Many of these candidates are highly conserved among metazoans but have not been previously implicated in these processes. Among the positives from the screen, we identified PAR-3, PAR-6, PKC-3 and CDC-42, proteins that are well known for their importance in the generation of embryonic and epithelial-cell polarity. Further analysis showed that endocytic transport in Caenorhabditis elegans coelomocytes and human HeLa cells was also compromised after perturbation of CDC-42/Cdc42 or PAR-6/Par6 function, indicating a general requirement for these proteins in regulating endocytic traffic. Consistent with these results, we found that tagged CDC-42/Cdc42 is enriched on recycling endosomes in C. elegans and mammalian cells, suggesting a direct function in the regulation of transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteolysis-inducing factor (PIF) is a sulphated glycoprotein produced by cachexia-inducing tumours, which initiates muscle protein degradation through an increased expression of the ubiquitin–proteasome proteolytic pathway. The role of kinase C (PKC) in PIF-induced proteasome expression has been studied in murine myotubes as a surrogate model of skeletal muscle. Proteasome expression induced by PIF was attenuated by 4alpha-phorbol 12-myristate 13-acetate (100 nM) and by the PKC inhibitors Ro31-8220 (10 muM), staurosporine (300 nM), calphostin C (300 nM) and Gö 6976 (200 muM). Proteolysis-inducing factor-induced activation of PKCalpha, with translocation from the cytosol to the membrane at the same concentration as that inducing proteasome expression, and this effect was attenuated by calphostin C. Myotubes transfected with a constitutively active PKCalpha (pCO2) showed increased expression of proteasome activity, and a longer time course, compared with their wild-type counterparts. In contrast, myotubes transfected with a dominant-negative PKCalpha (pKS1), which showed no activation of PKCalpha in response to PIF, exhibited no increase in proteasome activity at any time point. Proteolysis-inducing factor-induced proteasome expression has been suggested to involve the transcription factor nuclear factor-kappaB (NF-kappaB), which may be activated through PKC. Proteolysis-inducing factor induced a decrease in cytosolic I-kappaBalpha and an increase in nuclear binding of NF-kappaB in pCO2, but not in pKS1, and the effect in wild-type cells was attenuated by calphostin C, confirming that it was mediated through PKC. This suggests that PKC may be involved in the phosphorylation and degradation of I-kappaBalpha, induced by PIF, necessary for the release of NF-kappaB from its inactive cytosolic complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eukaryotic initiation factor 5A (eIF5A) is the only protein in nature that contains hypusine, an unusual amino acid derived from the modification of lysine by spermidine. Two genes, TIF51A and TIF51B, encode eIF5A in the yeast Saccharomyces cerevisiae. In an effort to understand the structure-function relationship of eIF5A, we have generated yeast mutants by introducing plasmid-borne tif51A into a double null strain where both TIF51A and TIF51B have been disrupted. One of the mutants, tsL102A strain (tif51A L102A tif51aDelta tif51bDelta) exhibits a strong temperature-sensitive growth phenotype. At the restrictive temperature, tsL102A strain also exhibits a cell shape change, a lack of volume change in response to temperature increase and becomes more sensitive to ethanol, a hallmark of defects in the PKC/WSC cell wall integrity pathway. In addition, a striking change in actin dynamics and a complete cell cycle arrest at G1 phase occur in tsL102A cells at restrictive temperature. The temperature-sensitivity of tsL102A strain is due to a rapid loss of mutant eIF5A with the half-life reduced from 6 h at permissive temperature to 20 min at restrictive temperature. Phenylmethyl sulfonylfluoride (PMSF), an irreversible inhibitor of serine protease, inhibited the degradation of mutant eIF5A and suppressed the temperature-sensitive growth arrest. Sorbitol, an osmotic stabilizer that complement defects in PKC/WSC pathways, stabilizes the mutant eIF5A and suppresses all the observed temperature-sensitive phenotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well-known that the rapid flow of water into and out of cells is controlled by membrane proteins called aquaporins (AQPs). However, the mechanisms that allow cells to quickly respond to a changing osmotic environment are less well established. Using GFP-AQP fusion proteins expressed in HEK293 cells, we demonstrate the reversible manipulation of cellular trafficking of AQP1. AQP1 trafficking was mediated by the tonicity of the cell environment in a specific PKC- and microtubule-dependent manner. This suggests that the increased level of water transport following osmotic change may be due a phosphorylation-dependent increase in the level of AQP1 trafficking resulting in membrane localization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer cachexia encompases severe weight loss, characterised by the debilitating atrophy of adipose and skeletal muscle mass. Skeletal muscle proteolysis in cancer cachexia is mediated by a sulphated glycoprotein with a relative molecular mass of 24kDa, termed Proteolysis-Inducing Factor (PIF). PIF induced a significant increase in protein degradation, peaking at 4.2nM PIF (p<0.001), ‘chymotrypsin-like’ activity of the proteasome (p<0.001) and increased expression of components of the ATP-ubiquitin dependent proteolytic pathway. This was attenuated in vitro by pre-incubation with the PKC inhibitor calphostin C (100µM) and NF-kB the inhibitors SN50 (18µM), curcumin (50µM) and resveratrol (30µM), 2 hours prior to the addition of PIF. In vivo studies found the IKK inhibitor resveratrol (1mg/kg) to be successful in attenuating protein degradation (p<0.001) and upregulation of ubiquitin-dependent proteolysis in MAC16 tumour bearing mice. C2C12 myoblasts transfected with mutant IkBα and PKCα inserts did not elicit a PIF-induced response, suggesting the importance of the transcription factor NF-kB and PKC  involvement in PIF signal transduction. 15(S)-HETE acts as an intracellular mediator of PIF and exerts an effect through the activation of PKC and subsequently IKK, which phosphorylates IkBα and allows NF-kB to migrate to the nucleus. This effect was negated with the PKC inhibitor calphostin C (300nM). A commercially produced PIF receptor antibody was raised in rabbits immunised with a peptide containing the partial N-terminal sequence of the PIF receptor. The PIF receptor antibody was successful in attenuating the PIF-induced increase in skeletal muscle catabolism and protein degradation in vitro at 10µg/ml (p<0.001) and 3.47mg/kg in vivo (p<0.001). The data suggest great potential in the development of this antibody as a therapy against cancer cachexia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tumour promoting phorbol esters such as 12-0-tetradecanoylphorbol-13-acetate (TPA) exert a multitude of biological effects on many cellular systems, many of which are believed to be mediated via the activation of the enzyme protein kinase C (PKC). TPA and other biologically active phorbol esters inhibited the proliferation of the A549 human lung carcinoma cell line. However, after 5-6 days culture in the continued presence of the phorbol ester cells began to proliferate at a rate similar to that of untreated cells. Resistance to TPA was lost following subculturing, although subculture in the presence of 10 nM TPA for more than 9 weeks resulted in a more resistant phenotype. The selection of a TPA-resistant subpopulation was not responsible for the observed resistance. The antiproliferative properties of other PKC activators were investigated. Mezerein induced the same antiproliferative effects as TPA but synthetic diacylglycerols (DAGs), the presumed physiological ligands of PKC, exerted only a non-specific cytotoxic influence on growth. Bryostatins 1 and 2 were able to induce transient growth arrest of A549 cells in a manner similar to phorbol esters at nanomolar concentrations, but at higher concentrations blocked both their own antiproliferative action and also that of phorbol esters and mezerein. Fourteen compounds synthesized to mimic features of the phorbol ester pharmacophore and/or DAGs did not mimic the antiproliferative properties of TPA in A549 cells and exerted only a DAG-like non-specific cytotoxicity at high concentrations. The subcellular distribution and activity of PKC was determined following partial purification by non-denaturing polyacrylamide gel electrophoresis. Treatment with TPA, mezerein or bryostatins resulted in a concentration-dependent shift of PKC activity from the cytosol to cellular membranes within 30 min. Significant translocation was not observed on treatment with DAGs. Chronic exposure of cells to TPA caused a time- and concentration dependent down-regulation of functional PKC activity. A complete loss of PKC activity was also observed on treatment with growth-inhibitory concentrations of bryostatins. No PKC activity was detected in cells resistant to the growth-inhibitory influence of TPA. Measurement of intracellular Ca2+ concentrations using A549 cells cultured on Cytodex 1 microcarrier beads revealed that TPA, mezerein and the bryostatins induced a similar rapid rise in intracellular Ca2+ levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PKC-mediated signalling pathways are important in cell growth and differentiation, and aberrations in these pathways are implicated in tumourigenesis. The objective of this project was to clarify the link between cell growth inhibition and PKC modulation.The PKC activators bryostatin 1 and 12-0-tetradecanoylphorbol-13-acetate (TPA) inhibited growth in A549 and MCF-7 adenocarcinoma cells with great potency, and induced HL-60 leukaemia cell differentiation. Bistratene A affected these cells similarly. Experiments were conducted to test the hypotheses that bistratene A exerts its effects via PKC modulation and that characteristics of cytostasis induced by bryostatin 1 and TPA depend upon PKC isozyme-specific events. After incubation of A549 cells with TPA or bistratene A, 2D phosphoprotein electrophoretograrns revealed three proteins phosphorylated by both agents. However, bistratene A was unable to induce the formation of cellular networks on the basement membrane substitute Matrigel, and staurosporine was unable to reverse bistratene A-induced [3H]thymidine uptake inhibition, unlike TPA. Bistratene A did not induce PKC translocation or downregulation, activate or inhibit A549 and MCF-7 cell cytosolic PKC or compete for phorbol ester receptors. Western blot analysis and hydroxylapatite chromatography identified PKC α, ε and ζ in these cells. Bistratene A was unable to activate any of these isoforms. Therefore the agent does not exert its antiproliferative effects by modulation of PKC activity. The abilities of bryostatin 1 and TPA (10nM-1μM) to induce PKC isoform translocation and downregulation were compared with antiproliferative effects. Both agents induced dose-dependent downregulation and translocation of PKC α and ε to particulate and nuclear cell fractions. PKC ζ was translocated to the particulate fraction by both agents in MCF-7 cells. The similarity of PKC isoform redistribution by these agents did not explain their divergent effects on cell growth, and the role of nuclear translocation of PKC in cytostasis was not confirmed by these studies. Alternative factors governing the characteristics of growth inhibition induced by these agents are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cholecystokinin (CCK) is a gut-brain peptide has been described to be able to induce mitosis according to recent studies. Additionally, conflicting data has been published on whether tumours of the central and peripheral nervous system in general, and gliomas in particular, express CCK receptors. In the present in vitro study we employed reverse transcription followed by the polymerase chain reaction (RT-PCR) to investigate whether mRNA for CCK-A and CCK-B receptors as well as CCK peptide itself is present in primary human gliomas and the U-87 MG GBM cell line. The data show that 14/14 (100%) of the primary gliomas exhibited mRNA expression for the CCK peptide gene and the B receptor including the U-87 MG cells, whereas, only 2/14 (14%) showed presence of the CCK-A receptor. The presence of CCK receptors together with CCK peptide expression itself suggests presence of an autocrine loop controlling glioma cell growth. In support of this conclusion, a neutralizing antibody against the CCK peptide exhibited a dose dependent inhibition of cell growth whereas, antagonists to CCK caused a dose depend inhibition of exogenous stimulated glioma cell growth in vitro, via the CCK-B receptor which is PKC activated. Assessment of apoptosis and proteasome activity were undertaken and we report that treatment with CCK antagonists decreased proteasome and increased caspase-3 activity. These data indicate that CCK peptide and CCK-B are abundant in human gliomas and they act to stimulate cell growth in an autocrine manner, primarily via the high affinity CCK-B receptor, which was blocked by antagonists to CCK, perhaps via apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insulin-like growth factor-I (IGF-I) has been shown to attenuate protein degradation in murine myotubes induced by angiotensin II through downregulation of the ubiquitin-proteasome pathway, although the mechanism is not known. Angiotensin II is known to upregulate this pathway through a cellular signalling mechanism involving release of arachidonic acid, activation of protein kinase Cα (PKCα), degradation of inhibitor-κB (I-κB) and nuclear migration of nuclear factor-κB (NF-κB), and all of these events were attenuated by IGF-I (13.2 nM). Induction of the ubiquitin-proteasome pathway has been linked to activation of the RNA-activated protein kinase (PKR), since an inhibitor of PKR attenuated proteasome expression and activity in response to angiotensin II and prevented the decrease in the myofibrillar protein myosin. Angiotensin II induced phosphorylation of PKR and of the eukaryotic initiation factor-2 (eIF2) on the α-subunit, and this was attenuated by IGF-I, by induction of the expression of protein phosphatase 1, which dephosphorylates PKR. Release of arachidonic acid and activation of PKCα by angiotensin II were attenuated by an inhibitor of PKR and IGF-I, and the effect was reversed by Salubrinal (15 μM), an inhibitor of eIF2α dephosphorylation, as was activation of PKCα. In addition myotubes transfected with a dominant-negative PKR (PKRΔ6) showed no release of arachidonate in response to Ang II, and no activation of PKCα. These results suggest that phosphorylation of PKR by angiotensin II was responsible for the activation of the PLA2/PKC pathway leading to activation of NF-κB and that IGF-I attenuates protein degradation due to an inhibitory effect on activation of PKR. © 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antioxidants butylated hydroxytoluene (BHT, 1 mM) and d-α-tocopherol (10 μM) completely attenuated protein degradation in murine myotubes in response to both proteolysis-inducing factor (PIF) and angiotensin II (Ang II), suggesting that the formation of reactive oxygen species (ROS) plays an important role in this process. Both PIF and Ang II induced a rapid and transient increase in ROS formation in myotubes, which followed a parabolic dose-response curve, similar to that for total protein degradation. Antioxidant treatment attenuated the increase in expression and activity of the ubiquitin-proteasome proteolytic pathway by PIF and Ang II, by preventing the activation of the transcription factor nuclear factor-κB (NF-κB), through inhibition of phosphorylation of the NF-κB inhibitor protein (I-κB) and its subsequent degradation. ROS formation by both PIF and Ang II was attenuated by diphenyleneiodonium (10 μM), suggesting that it was mediated through the NADPH oxidase system. ROS formation was also attenuated by trifluoroacetyl arachidonic acid (10 μM), a specific inhibitor of cytosolic phospholipase A2, U-73122 (5 μM) and D609 (200 μM), inhibitors of phospholipase C and calphostin C (300 nM), a highly specific inhibitor of protein kinase C (PKC), all known activators of NADPH oxidase. Myotubes containing a dominant-negative mutant of PKC did not show an increase in ROS formation in response to either PIF or Ang II. The two Rac1 inhibitors W56 (200 μM) and NSC23766 (10 μM) also attenuated both ROS formation and protein degradation induced by both PIF and Ang II. Rac1 is known to mediate signalling between the phosphatidylinositol-3 kinase (PI-3K) product and NADPH oxidase, and treatment with LY24002 (10 μM), a highly selective inhibitor of PI-3K, completely attenuated ROS production in response to both PIF and Ang II, and inhibited total protein degradation, while the inactive analogue LY303511 (100 μM) had no effect. ROS formation appears to be important in muscle atrophy in cancer cachexia, since treatment of weight losing mice bearing the MAC16 tumour with d-α-tocopherol (1 mg kg- 1) attenuated protein degradation and increased protein synthesis in skeletal muscle. © 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiotensin I and II have been shown to directly induce protein degradation in skeletal muscle through an increased activity and expression of the ubiquitin-proteasome proteolytic pathway. This investigation determines the role of the nuclear transcription factor nuclear factor-κB (NF-κB) in this process. Using murine myotubes as a surrogate model system both angiotensin I and II were found to induce activation of protein kinase C (PKC), with a parabolic dose-response curve similar to the induction of total protein degradation. Activation of PKC was required for the induction of proteasome expression, since calphostin C, a highly specific inhibitor of PKC, attenuated both the increase in total protein degradation and in proteasome expression and functional activity increased by angiotensin II. PKC is known to activate I-κB kinase (IKK), which is responsible for the phosphorylation and subsequent degradation of I-κB. Both angiotensin I and II induced an early decrease in cytoplasmic I-κB levels followed by nuclear accumulation of NF-κB. Using an NF-κB luciferase construct this was shown to increase transcriptional activation of NF-κB regulated genes. Maximal luciferase expression was seen at the same concentrations of angiotensin I/II as those inducing protein degradation. Total protein degradation induced by both angiotensin I and II was attenuated by resveratrol, which prevented nuclear accumulation of NF-κB, confirming that activation of NF-κB was responsible for the increased protein degradation. These results suggest that induction of proteasome expression by angiotensin I/II involves a signalling pathway involving PKC and NF-κB. © 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although muscle atrophy is common to a number of disease states there is incomplete knowledge of the cellular mechanisms involved. In this study murine myotubes were treated with the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA) to evaluate the role of protein kinase C (PKC) as an upstream intermediate in protein degradation. TPA showed a parabolic dose-response curve for the induction of total protein degradation, with an optimal effect at a concentration of 25 nM, and an optimal incubation time of 3 h. Protein degradation was attenuated by co-incubation with the proteasome inhibitor lactacystin (5 μM), suggesting that it was mediated through the ubiquitin-proteasome proteolytic pathway. TPA induced an increased expression and activity of the ubiquitin-proteasome pathway, as evidenced by an increased functional activity, and increased expression of the 20S proteasome α-subunits, the 19S subunits MSS1 and p42, as well as the ubiquitin conjugating enzyme E214k, also with a maximal effect at a concentration of 25 nM and with a 3 h incubation time. There was also a reciprocal decrease in the cellular content of the myofibrillar protein myosin. TPA induced activation of PKC maximally at a concentration of 25 nM and this effect was attenuated by the PKC inhibitor calphostin C (300 nM), as was also total protein degradation. These results suggest that stimulation of PKC in muscle cells initiates protein degradation through the ubiquitin-proteasome pathway. TPA also induced degradation of the inhibitory protein, I-κBα, and increased nuclear accumulation of nuclear factor-κB (NF-κB) at the same time and concentrations as those inducing proteasome expression. In addition inhibition of NF-κB activation by resveratrol (30 μM) attenuated protein degradation induced by TPA. These results suggest that the induction of proteasome expression by TPA may involve the transcription factor NF-κB. © 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dehydroepiandrosterone sulfate (DHEAS) is the most abundant steroid in the human circulation and is secreted by the adrenals in an age-dependent fashion, with maximum levels during the third decade and very low levels in old age. DHEAS is considered an inactive metabolite, whereas cleavage of the sulfate group generates dehydroepiandrosterone (DHEA), a crucial sex steroid precursor. However, here we show that DHEAS, but not DHEA, increases superoxide generation in primed human neutrophils in a dose-dependent fashion, thereby impacting on a key bactericidal mechanism. This effect was not prevented by coincubation with androgen and estrogen receptor antagonists but was reversed by the protein kinase C inhibitor Bisindolylmaleimide 1. Moreover, we found that neutrophils are unique among leukocytes in expressing an organic anion-transporting polypeptide D, able to mediate active DHEAS influx transport whereas they did not express steroid sulfatase that activates DHEAS to DHEA. A specific receptor for DHEAS has not yet been identified, but we show that DHEAS directly activated recombinant protein kinase C-ß (PKC-ß) in a cell-free assay. Enhanced PKC-ß activation by DHEAS resulted in increased phosphorylation of p47phox, a crucial component of the active reduced nicotinamide adenine dinucleotide phosphate complex responsible for neutrophil superoxide generation. Our results demonstrate that PKC-ß acts as an intracellular receptor for DHEAS in human neutrophils, a signaling mechanism entirely distinct from the role of DHEA as sex steroid precursor and with important implications for immunesenescence, which includes reduced neutrophil superoxide generation in response to pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Astrocytes in the rat thalamus display spontaneous [Ca2+]i oscillations that are due to intracellular release, but are not dependent on neuronal activity. In this study we have investigated the mechanisms involved in these spontaneous [Ca2+]i oscillations using slices loaded with Fluo-4 AM (5 μM) and confocal microscopy. Bafilomycin A1 incubation had no effect on the number of spontaneous [Ca2+]i oscillations indicating that they were not dependent on vesicular neurotransmitter release. Oscillations were also unaffected by ryanodine. Phospholipase C (PLC) inhibition decreased the number of astrocytes responding to metabotropic glutamate receptor (mGluR) activation but did not reduce the number of spontaneously active astrocytes, indicating that [Ca2+]i increases are not due to membrane-coupled PLC activation. Spontaneous [Ca2+]i increases were abolished by an IP3 receptor antagonist, whilst the protein kinase C (PKC) inhibitor chelerythrine chloride prolonged their duration, indicating a role for PKC and inositol 1,4,5,-triphosphate receptor activation. BayK8644 increased the number of astrocytes exhibiting [Ca2+]i oscillations, and prolonged the responses to mGluR activation, indicating a possible effect on store-operated Ca2+ entry. Increasing [Ca2+]o increased the number of spontaneously active astrocytes and the number of transients exhibited by each astrocyte. Inhibition of the endoplasmic reticulum Ca2+ ATPase by cyclopiazonic acid also induced [Ca2+]i transients in astrocytes indicating a role for cytoplasmic Ca2+ in the induction of spontaneous oscillations. Incubation with 20 μM Fluo-4 reduced the number of astrocytes exhibiting spontaneous increases. This study indicates that Ca2+ has a role in triggering Ca2+ release from an inositol 1,4,5,-triphosphate sensitive store in astrocytes during the generation of spontaneous [Ca2+]i oscillations