521 resultados para Pinch Grip
Resumo:
When a hand-held object is moved, grip and load force are accurately coordinated for establishing grasp stability. In the present work, the question was raised whether patients with Gilles de la Tourette syndrome (TS), who show tic-like movements, are impaired in grip-load force control when executing a manipulative task. To this end, we assessed force regulation during action patterns that required rhythmical unimanual or bimanual (iso-directional/anti-directional) movements. Results showed that the profile of grip-load force ratio was characterized by maxima and minima that were realized at upward and downward hand positions, respectively. TS patients showed increased force ratios during unimanual and bimanual movements, compared with control subjects, indicative of an inaccurate specification of the precision grip. Functional imaging data complemented the behavioural results and revealed that secondary motor areas showed no (or greatly reduced) activation in TS patients when executing the movement tasks as compared with baseline conditions. This indicates that the metabolic level in the secondary motor areas was equal during rest and task performance. At the neuronal level, this observation suggests that these cortical areas were continuously involved in movement preparation. Based on these data, we conclude that the ongoing activation of secondary motor areas may be explained by the TS patients' involuntary urges to move. Accordingly, interference will prevent an accurate planning of voluntary behaviour. Together, these findings reveal modulations in movement organization in patients with TS and exemplify degrading consequences for manual function.
Resumo:
Both anthropometric and functional measurements have been used in nutritional assessment and monitoring. Hand dynamometry is a predictor of surgical outcome and peak expiratory flow rate has been used as an index of respiratory muscle function. This study aims to measure in normal subjects the relationship between anthropometric measurements, voluntary muscle strength by hand grip dynamometry and respiratory muscle function by peak expiratory flow rate.
Resumo:
Background: Dementia is a multifaceted disorder that impairs cognitive functions, such as memory, language, and executive functions necessary to plan, organize, and prioritize tasks required for goal-directed behaviors. In most cases, individuals with dementia experience difficulties interacting with physical and social environments. The purpose of this study was to establish ecological validity and initial construct validity of a fire evacuation Virtual Reality Day-Out Task (VR-DOT) environment based on performance profiles as a screening tool for early dementia. Objective: The objectives were (1) to examine the relationships among the performances of 3 groups of participants in the VR-DOT and traditional neuropsychological tests employed to assess executive functions, and (2) to compare the performance of participants with mild Alzheimer’s-type dementia (AD) to those with amnestic single-domain mild cognitive impairment (MCI) and healthy controls in the VR-DOT and traditional neuropsychological tests used to assess executive functions. We hypothesized that the 2 cognitively impaired groups would have distinct performance profiles and show significantly impaired independent functioning in ADL compared to the healthy controls. Methods: The study population included 3 groups: 72 healthy control elderly participants, 65 amnestic MCI participants, and 68 mild AD participants. A natural user interface framework based on a fire evacuation VR-DOT environment was used for assessing physical and cognitive abilities of seniors over 3 years. VR-DOT focuses on the subtle errors and patterns in performing everyday activities and has the advantage of not depending on a subjective rating of an individual person. We further assessed functional capacity by both neuropsychological tests (including measures of attention, memory, working memory, executive functions, language, and depression). We also evaluated performance in finger tapping, grip strength, stride length, gait speed, and chair stands separately and while performing VR-DOTs in order to correlate performance in these measures with VR-DOTs because performance while navigating a virtual environment is a valid and reliable indicator of cognitive decline in elderly persons. Results: The mild AD group was more impaired than the amnestic MCI group, and both were more impaired than healthy controls. The novel VR-DOT functional index correlated strongly with standard cognitive and functional measurements, such as mini-mental state examination (MMSE; rho=0.26, P=.01) and Bristol Activities of Daily Living (ADL) scale scores (rho=0.32, P=.001). Conclusions: Functional impairment is a defining characteristic of predementia and is partly dependent on the degree of cognitive impairment. The novel virtual reality measures of functional ability seem more sensitive to functional impairment than qualitative measures in predementia, thus accurately differentiating from healthy controls. We conclude that VR-DOT is an effective tool for discriminating predementia and mild AD from controls by detecting differences in terms of errors, omissions, and perseverations while measuring ADL functional ability.
Resumo:
The important active and passive role of mineral dust aerosol in the climate and the global carbon cycle over the last glacial/interglacial cycles has been recognized. However, little data on the most important aeolian dust-derived biological micronutrient, iron (Fe), has so far been available from ice-cores from Greenland or Antarctica. Furthermore, Fe deposition reconstructions derived from the palaeoproxies particulate dust and calcium differ significantly from the Fe flux data available. The ability to measure high temporal resolution Fe data in polar ice-cores is crucial for the study of the timing and magnitude of relationships between geochemical events and biological responses in the open ocean. This work adapts an existing flow injection analysis (FIA) methodology for low-level trace Fe determinations with an existing glaciochemical analysis system, continuous flow analysis (CFA) of ice-cores. Fe-induced oxidation of N,N′-dimethyl-p-pheylenediamine (DPD) is used to quantify the biologically more important and easily leachable Fe fraction released in a controlled digestion step at pH ∼1.0. The developed method was successfully applied to the determination of labile Fe in ice-core samples collected from the Antarctic Byrd ice-core and the Greenland Ice-Core Project (GRIP) ice-core.
Resumo:
During the fifty-five years since the origin of the modern concept of stress, a variety of neurochemical, physiological, behavioral and pathological data have been collected in order to define stress and catalogue the components of the stress response. Over the last twenty-five years, as interest in the neural mechanisms underlying the stress response grew, most of the studies have focused on the hypothalamus and major limbic structures such as the amygdala or on nuclei involved in neurochemical changes observed during stress. There are other CNS sites, such as the bed nucleus of the stria terminalis (BNST), that neuroanatomical and neurochemical studies suggest may be involved in stress, but these sites have rarely been studied. Four experiments were performed for this dissertation, the goal of which was to examine the BNST to determine its role in the regulation of the stress response. The first experiment demonstrated that electrical stimulation of BNST was sufficient to produce stress-like behaviors. The second experiment demonstrated that single BNST neurons altered their firing rate in response to both a noxious somatosensory stimulus such as tail pinch and electrical stimulation of the amygdala (AmygS). The third experiment showed that the opioid, cholinergic, and noradrenergic systems, three neurotransmitter systems implicated in the control of the stress response, were effective in altering the firing rate of BNST neurons. The fourth experiment demonstrated that the cholinergic effects were mediated via muscarinic receptors and showed that the effects of AmygS were not mediated via cholinergic pathways. Collectively, these findings provide a possible explanation for the nonspecificity in causation of stress and the invariability of the stress response and suggest a neurochemical basis for its pharmacological control. ^
Resumo:
Air and water stable isotope measurements from four Greenland deep ice cores (GRIP, GISP2, NGRIP and NEEM) are investigated over a series of Dansgaard–Oeschger events (DO 8, 9 and 10), which are representative of glacial millennial scale variability. Combined with firn modeling, air isotope data allow us to quantify abrupt temperature increases for each drill site (1σ = 0.6 °C for NEEM, GRIP and GISP2, 1.5 °C for NGRIP). Our data show that the magnitude of stadial–interstadial temperature increase is up to 2 °C larger in central and North Greenland than in northwest Greenland: i.e., for DO 8, a magnitude of +8.8 °C is inferred, which is significantly smaller than the +11.1 °C inferred at GISP2. The same spatial pattern is seen for accumulation increases. This pattern is coherent with climate simulations in response to reduced sea-ice extent in the Nordic seas. The temporal water isotope (δ18O)–temperature relationship varies between 0.3 and 0.6 (±0.08) ‰ °C−1 and is systematically larger at NEEM, possibly due to limited changes in precipitation seasonality compared to GISP2, GRIP or NGRIP. The gas age−ice age difference of warming events represented in water and air isotopes can only be modeled when assuming a 26% (NGRIP) to 40% (GRIP) lower accumulation than that derived from a Dansgaard–Johnsen ice flow model.
Resumo:
BACKGROUND Unilateral ischemic stroke disrupts the well balanced interactions within bilateral cortical networks. Restitution of interhemispheric balance is thought to contribute to post-stroke recovery. Longitudinal measurements of cerebral blood flow (CBF) changes might act as surrogate marker for this process. OBJECTIVE To quantify longitudinal CBF changes using arterial spin labeling MRI (ASL) and interhemispheric balance within the cortical sensorimotor network and to assess their relationship with motor hand function recovery. METHODS Longitudinal CBF data were acquired in 23 patients at 3 and 9 months after cortical sensorimotor stroke and in 20 healthy controls using pulsed ASL. Recovery of grip force and manual dexterity was assessed with tasks requiring power and precision grips. Voxel-based analysis was performed to identify areas of significant CBF change. Region-of-interest analyses were used to quantify the interhemispheric balance across nodes of the cortical sensorimotor network. RESULTS Dexterity was more affected, and recovered at a slower pace than grip force. In patients with successful recovery of dexterous hand function, CBF decreased over time in the contralesional supplementary motor area, paralimbic anterior cingulate cortex and superior precuneus, and interhemispheric balance returned to healthy control levels. In contrast, patients with poor recovery presented with sustained hypoperfusion in the sensorimotor cortices encompassing the ischemic tissue, and CBF remained lateralized to the contralesional hemisphere. CONCLUSIONS Sustained perfusion imbalance within the cortical sensorimotor network, as measured with task-unrelated ASL, is associated with poor recovery of dexterous hand function after stroke. CBF at rest might be used to monitor recovery and gain prognostic information.
Resumo:
Due to their outstanding resolution and well-constrained chronologies, Greenland ice-core records provide a master record of past climatic changes throughout the Last Interglacial–Glacial cycle in the North Atlantic region. As part of the INTIMATE (INTegration of Ice-core, MArine and TErrestrial records) project, protocols have been proposed to ensure consistent and robust correlation between different records of past climate. A key element of these protocols has been the formal definition and ordinal numbering of the sequence of Greenland Stadials (GS) and Greenland Interstadials (GI) within the most recent glacial period. The GS and GI periods are the Greenland expressions of the characteristic Dansgaard–Oeschger events that represent cold and warm phases of the North Atlantic region, respectively. We present here a more detailed and extended GS/GI template for the whole of the Last Glacial period. It is based on a synchronization of the NGRIP, GRIP, and GISP2 ice-core records that allows the parallel analysis of all three records on a common time scale. The boundaries of the GS and GI periods are defined based on a combination of stable-oxygen isotope ratios of the ice (δ18O, reflecting mainly local temperature) and calcium ion concentrations (reflecting mainly atmospheric dust loading) measured in the ice. The data not only resolve the well-known sequence of Dansgaard–Oeschger events that were first defined and numbered in the ice-core records more than two decades ago, but also better resolve a number of short-lived climatic oscillations, some defined here for the first time. Using this revised scheme, we propose a consistent approach for discriminating and naming all the significant abrupt climatic events of the Last Glacial period that are represented in the Greenland ice records. The final product constitutes an extended and better resolved Greenland stratotype sequence, against which other proxy records can be compared and correlated. It also provides a more secure basis for investigating the dynamics and fundamental causes of these climatic perturbations.
Resumo:
3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors are widely used for secondary stroke prevention. Besides their lipid-lowering activity, pleiotropic effects on neuronal survival, angiogenesis, and neurogenesis have been described. In view of these observations, we were interested whether HMG-CoA reductase inhibition in the post-acute stroke phase promotes neurological recovery, peri-lesional, and contralesional neuronal plasticity. We examined effects of the HMG-CoA reductase inhibitor rosuvastatin (0.2 or 2.0 mg/kg/day i.c.v.), administered starting 3 days after 30 min of middle cerebral artery occlusion for 30 days. Here, we show that rosuvastatin treatment significantly increased the grip strength and motor coordination of animals, promoted exploration behavior, and reduced anxiety. It was associated with structural remodeling of peri-lesional brain tissue, reflected by increased neuronal survival, enhanced capillary density, and reduced striatal and corpus callosum atrophy. Increased sprouting of contralesional pyramidal tract fibers crossing the midline in order to innervate the ipsilesional red nucleus was noticed in rosuvastatin compared with vehicle-treated mice, as shown by anterograde tract tracing experiments. Western blot analysis revealed that the abundance of HMG-CoA reductase was increased in the contralesional hemisphere at 14 and 28 days post-ischemia. Our data support the idea that HMG-CoA reductase inhibition promotes brain remodeling and plasticity far beyond the acute stroke phase, resulting in neurological recovery.
Resumo:
Tephra layers preserved within the Greenland ice-cores are crucial for the independent synchronisation of these high-resolution records to other palaeoclimatic archives. Here we present a new and detailed tephrochronological framework for the time period 25,000 e 45,000 a b2k that brings together results from 4 deep Greenland ice-cores. In total, 99 tephra deposits, the majority of which are preserved as cryptotephra, are described from the NGRIP, NEEM, GRIP and DYE-3 records. The major element signatures of single glass shards within these deposits indicate that 93 are basaltic in composition all originating from Iceland. Specifically, 43 originate from Grimsv € otn, 20 are thought to be sourced from the Katla volcanic system and 17 show affinity to the Kverkfj € oll system. Robust geochemical characterisations, independent ages derived from the GICC05 ice-core chronology, and the stratigraphic positions of these deposits relative to the Dansgaard-Oeschger climate events represent a key framework that provides new information on the frequency and nature of volcanic events in the North Atlantic region between GS-3 and GI-12. Of particular importance are 19 tephra deposits that lie on the rapid climatic transitions that punctuate the last glacial period. This framework of well-constrained, time-synchronous tie-lines represents an important step towards the independent synchronisation of marine, terrestrial and ice-core records from the North Atlantic region, in order to assess the phasing of rapid climatic changes during the last glacial period.
Resumo:
Climate changes in the North Atlantic region during the last glacial cycle were dominated by the slow waxing and waning of the North American ice sheet as well as by intermittent, millennial-scale Dansgaard–Oeschger climate oscillations. However, prior to the last deglaciation, the responses of North American vegetation and biomass burning to these climate variations are uncertain. Ammonium in Greenland ice cores, a product from North American soil emissions and biomass burning events, can help to fill this gap. Here we use continuous, high-resolution measurements of ammonium concentrations between 110,000 to 10,000 years ago from the Greenland NGRIP and GRIP ice cores to reconstruct North American wildfire activity and soil ammonium emissions. We find that on orbital timescales soil emissions increased under warmer climate conditions when vegetation expanded northwards into previously ice-covered areas. For millennial-scale interstadial warm periods during Marine Isotope Stage 3, the fire recurrence rate increased in parallel to the rapid warmings, whereas soil emissions rose more slowly, reflecting slow ice shrinkage and delayed ecosystem changes. We conclude that sudden warming events had little impact on soil ammonium emissions and ammonium transport to Greenland, but did result in a substantial increase in the frequency of North American wildfires.
Resumo:
Background Protein-energy-malnutrition (PEM) is common in people with end stage kidney disease (ESKD) undergoing maintenance haemodialysis (MHD) and correlates strongly with mortality. To this day, there is no gold standard for detecting PEM in patients on MHD. Aim of Study The aim of this study was to evaluate if Nutritional Risk Screening 2002 (NRS-2002), handgrip strength measurement, mid-upper arm muscle area (MUAMA), triceps skin fold measurement (TSF), serum albumin, normalised protein catabolic rate (nPCR), Kt/V and eKt/V, dry body weight, body mass index (BMI), age and time since start on MHD are relevant for assessing PEM in patients on MHD. Methods The predictive value of the selected parameters on mortality and mortality or weight loss of more than 5% was assessed. Quantitative data analysis of the 12 parameters in the same patients on MHD in autumn 2009 (n = 64) and spring 2011 (n = 40) with paired statistical analysis and multivariate logistic regression analysis was performed. Results Paired data analysis showed significant reduction of dry body weight, BMI and nPCR. Kt/Vtot did not change, eKt/v and hand grip strength measurements were significantly higher in spring 2011. No changes were detected in TSF, serum albumin, NRS-2002 and MUAMA. Serum albumin was shown to be the only predictor of death and of the combined endpoint “death or weight loss of more than 5%”. Conclusion We now screen patients biannually for serum albumin, nPCR, Kt/V, handgrip measurement of the shunt-free arm, dry body weight, age and time since initiation of MHD.
Resumo:
Skunks are becoming increasingly popular as pets. As such, they often undergo a variety of surgical procedures. Two pet skunks undergoing a dermatological examination, including skin biopsy, were anaesthetised with a combination of dexmedetomidine (0.02 mg/kg), butorphanol (0.3 mg/kg), and alfaxalone (4 mg/kg), all administered intramuscularly. Anaesthesia was characterised by rapid onset, absence of detectable side effects and fast recovery after atipamezole administration. Biopsies and toe-pinch did not elicit cardiorespiratory responses, nor did it result in movements or lightening of the anaesthetic depth. Both skunks recovered uneventfully, and showed normal appetite and regular defecation within eight hours following surgery. However, both the animals experienced mild hypothermia at recovery. The dexmedetomidine-alfaxalone-butorphanol combination produced satisfactory anaesthesia in the two skunks, object of this report. This anaesthetic protocol may be used in this species to provide immobility, myorelaxation, unconsciousness and analgesia during skin biopsy or other minor surgical procedures.
Resumo:
Pollen and plant-macrofossil data are presented for two lakes near the timberline in the Italian (Lago Basso, 2250 m) and Swiss Central Alps (Gouille Rion, 2343 m). The reforestation at both sites started at 9700-9500 BP with Pinus cembra, Larbc decidua, and Betula. The timberline reached its highest elevation between 8700 and 5000 BP and retreated after 5000 BP, due to a mid-Holocene climatic change and increasing human impact since about 3500 BP (Bronze Age). The expansion of Picea abies at Lago Basso between ca. 7500 and 6200 BP was probably favored by cold phases accompanied by increased oceanicity, whereas in the area of Gouille Rion, where spruce expanded rather late (between 4500 and 3500 BP), human influence equally might have been important. The mass expansion of Alnus viridis between ca. 5000 and 3500 BP probably can be related to both climatic change and human activity at timberline. During the early and middle Holocene a series of timberline fluctuations is recorded as declines in pollen and macrofossil concentrations of the major tree species, and as increases in nonarboreal pollen in the pollen percentage diagram of Gouille Rion. Most of ·the periods of low timberline can be correlated by radiocarbon dating with climatic changes in the Alps as indicated by glacier ad vances in combination with palynological records, solifluction, and dendrocli matical data. Lago Basso and Gouille Rion are the only sites in the Alps showing complete palaeobotanical records of cold phases between 10,000 and 2000 BP with very good time control. The altitudinal range of the Holocene treeline fluc tuations caused by climate most likely was not more than 100 to 150 m. A possible correlation of a cold period at ca. 7500-6500 BP (Misox oscil lation) in the Alps is made with paleoecological data from North America and Scandinavia and a climatic signal in the GRIP ice core from central Greenland 8200 yr ago (ca. 7400 yr uncal. BP).
Resumo:
Qualitative and quantitative changes in fossil flora and fauna have been used in many studies to infer climatic change. Here we ask a different question: how do flora and fauna respond to climatic changes such as rapid warming or cooling? As an independent proxy for paleotemperature we take the ratio of oxygen isotopes in biogenically precipitated lake marl and in ostracod shells. This introductory paper describes the project design and the five sites on an altitudinal transect from 600 m to about 2300 m asl in the western Swiss Alps. As cases of climatic cooling and warming we use the beginning and end of the Younger Dryas as major changes, and the Gerzensee and Preboreal oscillations as minor changes. At the two sites of Gerzensee and Leysin these changes are recorded in stable-isotope ratios, and there the time scales can be derived by correlations to the GRIP ice core (Schwander et al., 2000 and von Grafenstein et al., 2000). Biotic responses to climate changes are treated in individual papers using pollen (Wick, 2000), plant macrofossils (Tobolski and Ammann, 2000), and remains of chironomids (Brooks, 2000), beetles and other insects (Lemdahl, 2000), and chydorid Cladocera (Hofmann, 2000). They are followed by a synthesis focusing on quantification of biotic responses (Ammann et al., 2000). In addition, a reconstruction of summer temperatures for the Allerød and the Younger Dryas at Gerzensee is provided by Lotter et al. (2000).