989 resultados para Physical layer
Resumo:
Turbulence profile measurements made on the upper continental slope and shelf of the southeastern Weddell Sea reveal striking contrasts in dissipation and mixing rates between the two sites. The mean profiles of dissipation rates from the upper slope are 1-2 orders of magnitude greater than the profiles collected over the shelf in the entire water column. The difference increases toward the bottom where the dissipation rate of turbulent kinetic energy and the vertical eddy diffusivity on the slope exceed 10?7 W kg?1 and 10?2 m2 s?1, respectively. Elevated levels of turbulence on the slope are concentrated within a 100 m thick bottom layer, which is absent on the shelf. The upper slope is characterized by near-critical slopes and is in close proximity to the critical latitude for semidiurnal internal tides. Our observations suggest that the upper continental slope of the southern Weddell Sea is a generation site of semidiurnal internal tide, which is trapped along the slope along the critical latitude, and dissipates its energy in a inline image m thick layer near the bottom and within inline image km across the slope.
Resumo:
The mixed layer (ML) temperature and salinity changes in the central tropical Atlantic have been studied by a dedicated experiment (Cold Tongue Experiment (CTE)) carried out from May to July 2011. The CTE was based on two successive research cruises, a glider swarm, and moored observations. The acquired in situ data sets together with satellite, reanalysis, and assimilation model data were used to evaluate box-averaged ML heat and salinity budgets for two subregions: (1) the western equatorial Atlantic cold tongue (ACT) (23°-10°W) and (2) the region north of the ACT. The strong ML heat loss in the ACT region during the CTE was found to be the result of the balance of warming due to net surface heat flux and cooling due to zonal advection and diapycnal mixing. The northern region was characterized by weak cooling and the dominant balance of net surface heat flux and zonal advection. A strong salinity increase occurred at the equator, 10°W, just before the CTE. During the CTE, ML salinity in the ACT region slightly increased. Largest contributions to the ML salinity budget were zonal advection and the net surface freshwater flux. While essential for the ML heat budget in the ACT region, diapycnal mixing played only a minor role for the ML salinity budget. In the region north of the ACT, the ML freshened at the beginning of the CTE due to precipitation, followed by a weak salinity increase. Zonal advection changed sign contributing to ML freshening at the beginning of the CTE and salinity increase afterward.
Resumo:
En esta tesis se integran numéricamente las ecuaciones reducidas de Navier Stokes (RNS), que describen el flujo en una capa límite tridimensional que presenta también una escala característica espacial corta en el sentido transversal. La formulación RNS se usa para el cálculo de “streaks” no lineales de amplitud finita, y los resultados conseguidos coinciden con los existentes en la literatura, obtenidos típicamente utilizando simulación numérica directa (DNS) o nonlinear parabolized stability equations (PSE). El cálculo de los “streaks” integrando las RNS es mucho menos costoso que usando DNS, y no presenta los problemas de estabilidad que aparecen en la formulación PSE cuando la amplitud del “streak” deja de ser pequeña. El código de integración RNS se utiliza también para el cálculo de los “streaks” que aparecen de manera natural en el borde de ataque de una placa plana en ausencia de perturbaciones en la corriente uniforme exterior. Los resultados existentes hasta ahora calculaban estos “streaks” únicamente en el límite lineal (amplitud pequeña), y en esta tesis se lleva a cabo el cálculo de los mismos en el régimen completamente no lineal (amplitud finita). En la segunda parte de la tesis se generaliza el código RNS para incluir la posibilidad de tener una placa no plana, con curvatura en el sentido transversal que varía lentamente en el sentido de la corriente. Esto se consigue aplicando un cambio de coordenadas, que transforma el dominio físico en uno rectangular. La formulación RNS se integra también expresada en las correspondientes coordenadas curvilíneas. Este código generalizado RNS se utiliza finalmente para estudiar el flujo de capa límite sobre una placa con surcos que varían lentamente en el sentido de la corriente, y es usado para simular el flujo sobre surcos que crecen en tal sentido. Abstract In this thesis, the reduced Navier Stokes (RNS) equations are numerically integrated. This formulation describes the flow in a three-dimensional boundary layer that also presents a short characteristic space scale in the spanwise direction. RNS equations are used to calculate nonlinear finite amplitude “streaks”, and the results agree with those reported in the literature, typically obtained using direct numerical simulation (DNS) or nonlinear parabolized stability equations (PSE). “Streaks” simulations through the RNS integration are much cheaper than using DNS, and avoid stability problems that appear in the PSE when the amplitude of the “streak” is not small. The RNS integration code is also used to calculate the “streaks” that naturally emerge at the leading edge of a flat plate boundary layer in the absence of any free stream perturbations. Up to now, the existing results for these “streaks” have been only calculated in the linear limit (small amplitude), and in this thesis their calculation is carried out in the fully nonlinear regime (finite amplitude). In the second part of the thesis, the RNS code is generalized to include the possibility of having a non-flat plate, curved in the spanwise direction and slowly varying in the streamwise direction. This is achieved by applying a change of coordinates, which transforms the physical domain into a rectangular one. The RNS formulation expressed in the corresponding curvilinear coordinates is also numerically integrated. This generalized RNS code is finally used to study the boundary layer flow over a plate with grooves which vary slowly in the streamwise direction; and this code is used to simulate the flow over grooves that grow in the streamwise direction.
Resumo:
Objective: This research is focused in the creation and validation of a solution to the inverse kinematics problem for a 6 degrees of freedom human upper limb. This system is intended to work within a realtime dysfunctional motion prediction system that allows anticipatory actuation in physical Neurorehabilitation under the assisted-as-needed paradigm. For this purpose, a multilayer perceptron-based and an ANFIS-based solution to the inverse kinematics problem are evaluated. Materials and methods: Both the multilayer perceptron-based and the ANFIS-based inverse kinematics methods have been trained with three-dimensional Cartesian positions corresponding to the end-effector of healthy human upper limbs that execute two different activities of the daily life: "serving water from a jar" and "picking up a bottle". Validation of the proposed methodologies has been performed by a 10 fold cross-validation procedure. Results: Once trained, the systems are able to map 3D positions of the end-effector to the corresponding healthy biomechanical configurations. A high mean correlation coefficient and a low root mean squared error have been found for both the multilayer perceptron and ANFIS-based methods. Conclusions: The obtained results indicate that both systems effectively solve the inverse kinematics problem, but, due to its low computational load, crucial in real-time applications, along with its high performance, a multilayer perceptron-based solution, consisting in 3 input neurons, 1 hidden layer with 3 neurons and 6 output neurons has been considered the most appropriated for the target application.