720 resultados para Physical activity, Education level
Resumo:
Background: Adolescence is a period of life associated with self-perceptions of negative body image. Physical activity levels are low and screen time levels are also high during this stage. These perceptions and behaviours are associated with poor health outcomes, making research on their determinants important. With adolescent populations, certain groups may be at higher risk of body dissatisfaction than others, and body dissatisfaction may influence individual physical activity and screen time levels. Objectives: The objectives of this thesis were to: 1) describe body image among young Canadians, examining possible health inequalities 2) estimate the strength and significance of associations between body satisfaction, physical activity and screen time, and 3) examine the potential etiological role of biological sex. Methods: Objective 1: The 2013/2014 Health Behaviour in School-aged Children study was employed. Sex-stratified Rao-Scott chi-square analyses were conducted to examine associations between socio-demographic factors and body satisfaction. Objective 2: The 2005/2006 and 2013/2014 cross-sectional and 2006 longitudinal HBSC data sets were used. Sex-stratified modified Poisson regressions were conducted and risk estimates and associated confidence intervals obtained. Results: Objective 1: Among males, being older, of East and Southeast Asian ethnicity, and reporting low SES all were associated with body dissatisfaction. Among females, being older, of Arab and West Asian or African ethnicity, being born in Canada, and reporting low SES were all associated with being body dissatisfied. Objective 2: Cross-sectionally, males who reported ‘too fat’ body dissatisfaction were more likely to be physically inactive. Adolescents of both sexes who reported ‘too fat’ body dissatisfaction were more likely to engage in high levels of screen time. Data from the longitudinal component supported the idea that male ‘too fat’ body dissatisfaction temporally leads to physical inactivity, but showed an inverse relationship between body dissatisfaction and screen time. Conclusions: Objective 1: Future prevention efforts in Canada should target subgroups to effectively help those at greatest risk of body dissatisfaction, and ameliorate potential inequalities at the population level. Objective 2: The presence of these relationships may inform future interventions as part of a multi-factorial etiology, in order to increase physical activity and decrease screen time among youth.
Resumo:
BACKGROUND:
Evidence regarding the association of the built environment with physical activity is influencing policy recommendations that advocate changing the built environment to increase population-level physical activity. However, to date there has been no rigorous appraisal of the quality of the evidence on the effects of changing the built environment. The aim of this review was to conduct a thorough quantitative appraisal of the risk of bias present in those natural experiments with the strongest experimental designs for assessing the causal effects of the built environment on physical activity.
METHODS:
Eligible studies had to evaluate the effects of changing the built environment on physical activity, include at least one measurement before and one measurement of physical activity after changes in the environment, and have at least one intervention site and non-intervention comparison site. Given the large number of systematic reviews in this area, studies were identified from three exemplar systematic reviews; these were published in the past five years and were selected to provide a range of different built environment interventions. The risk of bias in these studies was analysed using the Cochrane Risk of Bias Assessment Tool: for Non-Randomized Studies of Interventions (ACROBAT-NRSI).
RESULTS:
Twelve eligible natural experiments were identified. Risk of bias assessments were conducted for each physical activity outcome from all studies, resulting in a total of fifteen outcomes being analysed. Intervention sites included parks, urban greenways/trails, bicycle lanes, paths, vacant lots, and a senior citizen's centre. All outcomes had an overall critical (n = 12) or serious (n = 3) risk of bias. Domains with the highest risk of bias were confounding (due to inadequate control sites and poor control of confounding variables), measurement of outcomes, and selection of the reported result.
CONCLUSIONS:
The present review focused on the strongest natural experiments conducted to date. Given this, the failure of existing studies to adequately control for potential sources of bias highlights the need for more rigorous research to underpin policy recommendations for changing the built environment to increase physical activity. Suggestions are proposed for how future natural experiments in this area can be improved.
Resumo:
From 4 to 7 April 2016, 24 researchers from 8 countries and from a variety of academic disciplines gathered in Snekkersten, Denmark, to reach evidence-based consensus about physical activity in children and youth, that is, individuals between 6 and 18 years. Physical activity is an overarching term that consists of many structured and unstructured forms within school and out-of-school-time contexts, including organised sport, physical education, outdoor recreation, motor skill development programmes, recess, and active transportation such as biking and walking. This consensus statement presents the accord on the effects of physical activity on children's and youth's fitness, health, cognitive functioning, engagement, motivation, psychological well-being and social inclusion, as well as presenting educational and physical activity implementation strategies. The consensus was obtained through an iterative process that began with presentation of the state-of-the art in each domain followed by plenary and group discussions. Ultimately, Consensus Conference participants reached agreement on the 21-item consensus statement.
Resumo:
Background: Currently, under half of the adolescents reach recommended daily levels of physical activity (PA). It is known that higher levels of PA lead to higher levels of cardiorespiratory fitness (CRF) and therefore, a health-related CRF criterion value could contribute to identify the target population for primary cardiovascular disease prevention. Therefore, the aim of this study was to explore the relation between PA levels and CRF factors in healthy adolescents. Methods: A cross-sectional exploratory study with healthy adolescents aged 12-18 years old was conducted. Socio-demographic and body composition data were collected using a questionnaire. PA level was scored with the Physical Activity Index (PAI) and CRF assessment included lung function (LF) measured with spirometry and exercise tolerance measured with Incremental Shuttle Walking Test (ISWT). According to PAI scores the sample was divided in two groups: 1 (sedentary, low and moderately active); 2 (vigorously active (VA)). Descriptive statistics were applied to characterise the sample. Independent sample t-tests assessed differences between groups and simple logistic regressions identified the predictors of being VA. Results: The study included 115 adolescents (14.63±1.70 years old; 56.52% female). Adolescents presented a normal body mass index=21.19±3.14 Kg.m-2) and LF (forced expiratory volume in the first second (FEV1)=105.58±12.73% of the predicted). Significant differences were found between groups in height (G1–163.44±8.01; G2–167±8.65; p=0.024), LF (FEV1/ forced vital capacity (FVC); G1–97.58±10.66; G2–94.04±8.04; p=0.049), ISWT distance (G1– 1089.81±214.04; G2–1173.60±191.86; p=0.038); heart rate (HR) at rest (G1– 84.61±13.68; G2–79.23±13.81; p=0.038), HR at the end of the best ISWT (G1– 124.71±37.57; G2–133.54±33.61; p=0.041) and percentage of the maximal HR achieved during ISWT (G1–63.09±19.03; G2–67.53±17.08; p=0.043). Simple logistic regressions showed that height (OR–1.054; 95%CI 1.006-1.104), ISWT distance (OR–1.002; 95%CI 1.000-1.004) and HR at rest (OR–0.971; 95%CI 0.945-0.999) were predictors of being VA. Conclusions: Results suggest that more physically active adolescents have a better CRF profile. The findings suggest that PA is important to adolescents’ health status and it should be encouraged since childhood. Clinical practice will benefit from the use of PAI, ISWT and HR findings, allowing physiotherapists to use it for prescribing exercise.
Resumo:
Background Physical activity in children with intellectual disabilities is a neglected area of study, which is most apparent in relation to physical activity measurement research. Although objective measures, specifically accelerometers, are widely used in research involving children with intellectual disabilities, existing research is based on measurement methods and data interpretation techniques generalised from typically developing children. However, due to physiological and biomechanical differences between these populations, questions have been raised in the existing literature on the validity of generalising data interpretation techniques from typically developing children to children with intellectual disabilities. Therefore, there is a need to conduct population-specific measurement research for children with intellectual disabilities and develop valid methods to interpret accelerometer data, which will increase our understanding of physical activity in this population. Methods Study 1: A systematic review was initially conducted to increase the knowledge base on how accelerometers were used within existing physical activity research involving children with intellectual disabilities and to identify important areas for future research. A systematic search strategy was used to identify relevant articles which used accelerometry-based monitors to quantify activity levels in ambulatory children with intellectual disabilities. Based on best practice guidelines, a novel form was developed to extract data based on 17 research components of accelerometer use. Accelerometer use in relation to best practice guidelines was calculated using percentage scores on a study-by-study and component-by-component basis. Study 2: To investigate the effect of data interpretation methods on the estimation of physical activity intensity in children with intellectual disabilities, a secondary data analysis was conducted. Nine existing sets of child-specific ActiGraph intensity cut points were applied to accelerometer data collected from 10 children with intellectual disabilities during an activity session. Four one-way repeated measures ANOVAs were used to examine differences in estimated time spent in sedentary, moderate, vigorous, and moderate to vigorous intensity activity. Post-hoc pairwise comparisons with Bonferroni adjustments were additionally used to identify where significant differences occurred. Study 3: The feasibility on a laboratory-based calibration protocol developed for typically developing children was investigated in children with intellectual disabilities. Specifically, the feasibility of activities, measurements, and recruitment was investigated. Five children with intellectual disabilities and five typically developing children participated in 14 treadmill-based and free-living activities. In addition, resting energy expenditure was measured and a treadmill-based graded exercise test was used to assess cardiorespiratory fitness. Breath-by-breath respiratory gas exchange and accelerometry were continually measured during all activities. Feasibility was assessed using observations, activity completion rates, and respiratory data. Study 4: Thirty-six children with intellectual disabilities participated in a semi-structured school-based physical activity session to calibrate accelerometry for the estimation of physical activity intensity. Participants wore a hip-mounted ActiGraph wGT3X+ accelerometer, with direct observation (SOFIT) used as the criterion measure. Receiver operating characteristic curve analyses were conducted to determine the optimal accelerometer cut points for sedentary, moderate, and vigorous intensity physical activity. Study 5: To cross-validate the calibrated cut points and compare classification accuracy with existing cut points developed in typically developing children, a sub-sample of 14 children with intellectual disabilities who participated in the school-based sessions, as described in Study 4, were included in this study. To examine the validity, classification agreement was investigated between the criterion measure of SOFIT and each set of cut points using sensitivity, specificity, total agreement, and Cohen’s kappa scores. Results Study 1: Ten full text articles were included in this review. The percentage of review criteria met ranged from 12%−47%. Various methods of accelerometer use were reported, with most use decisions not based on population-specific research. A lack of measurement research, specifically the calibration/validation of accelerometers for children with intellectual disabilities, is limiting the ability of researchers to make appropriate and valid accelerometer use decisions. Study 2: The choice of cut points had significant and clinically meaningful effects on the estimation of physical activity intensity and sedentary behaviour. For the 71-minute session, estimations for time spent in each intensity between cut points ranged from: sedentary = 9.50 (± 4.97) to 31.90 (± 6.77) minutes; moderate = 8.10 (± 4.07) to 40.40 (± 5.74) minutes; vigorous = 0.00 (± .00) to 17.40 (± 6.54) minutes; and moderate to vigorous = 8.80 (± 4.64) to 46.50 (± 6.02) minutes. Study 3: All typically developing participants and one participant with intellectual disabilities completed the protocol. No participant met the maximal criteria for the graded exercise test or attained a steady state during the resting measurements. Limitations were identified with the usability of respiratory gas exchange equipment and the validity of measurements. The school-based recruitment strategy was not effective, with a participation rate of 6%. Therefore, a laboratory-based calibration protocol was not feasible for children with intellectual disabilities. Study 4: The optimal vertical axis cut points (cpm) were ≤ 507 (sedentary), 1008−2300 (moderate), and ≥ 2301 (vigorous). Sensitivity scores ranged from 81−88%, specificity 81−85%, and AUC .87−.94. The optimal vector magnitude cut points (cpm) were ≤ 1863 (sedentary), ≥ 2610 (moderate) and ≥ 4215 (vigorous). Sensitivity scores ranged from 80−86%, specificity 77−82%, and AUC .86−.92. Therefore, the vertical axis cut points provide a higher level of accuracy in comparison to the vector magnitude cut points. Study 5: Substantial to excellent classification agreement was found for the calibrated cut points. The calibrated sedentary cut point (ĸ =.66) provided comparable classification agreement with existing cut points (ĸ =.55−.67). However, the existing moderate and vigorous cut points demonstrated low sensitivity (0.33−33.33% and 1.33−53.00%, respectively) and disproportionately high specificity (75.44−.98.12% and 94.61−100.00%, respectively), indicating that cut points developed in typically developing children are too high to accurately classify physical activity intensity in children with intellectual disabilities. Conclusions The studies reported in this thesis are the first to calibrate and validate accelerometry for the estimation of physical activity intensity in children with intellectual disabilities. In comparison with typically developing children, children with intellectual disabilities require lower cut points for the classification of moderate and vigorous intensity activity. Therefore, generalising existing cut points to children with intellectual disabilities will underestimate physical activity and introduce systematic measurement error, which could be a contributing factor to the low levels of physical activity reported for children with intellectual disabilities in previous research.